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Correlation clustering, or multicut partitioning, is widely used in image seg-
mentation for partitioning an undirected graph or image with positive and
negative edge weights such that the sum of cut edge weights is minimized.
Due to its NP-hardness, exact solvers do not scale and approximative solvers
often give unsatisfactory results. We investigate scalable methods for cor-
relation clustering. To this end we define fusion moves for the correlation
clustering problem.

Our algorithm iteratively fuses the current and a proposed partitioning
which monotonously improves the partitioning and maintains a valid par-
titioning at all times. Furthermore, it scales to larger datasets, gives near
optimal solutions, and at the same time shows a good anytime performance.

Correlation clustering [6], also known as the multicut problem [10] is a
basic primitive in computer vision [2, 3, 4, 16] and data mining [5, 8, 9, 15].

Its merit is, firstly, that it accommodates both positive (attractive) and
negative (repulsive) edge weights. This allows doing justice to evidence in
the data that two nodes or pixels do not wish or do wish to end up in the same
cluster or segment, respectively. Secondly, it does not require a specification
of the number of clusters beforehand.

In signed social networks, where positive and negative edges encode
friend and foe relationships, respectively, correlation clustering is a natural
way to detect communities [8, 9]. Correlation clustering can also be used
to cluster query refinements in web search [15]. Because social and web-
related networks are often huge, heuristic methods, the PIVOT-algorithm [1],
are popular [9].

In computer vision applications, unsupervised image segmentation al-
gorithms often start with an over-segmentation into superpixels (superre-
gions), which are then clustered into “perceptually meaningful” regions by
correlation clustering. Such an approach has been shown to yield state-of-
the-art results on the Berkeley Segmentation Database [2, 3, 12, 16].

While it has a clear mathematical formulation and nice properties, cor-
relation clustering suffers from NP-hardness. Consequently, partition prob-
lems on large scale data, huge volume images in computational neuroscience [4]
or social networks [14], are not tractable because reasonable solutions can-
not be computed in acceptable time.

Contribution. In this work we present novel approaches that are designed
for large scale correlation clustering problems. First, we define a novel en-
ergy based agglomerative clustering algorithm that monotonically increases
the energy. With this at hand we show how to improve the anytime per-
formance of Cut, Clue & Cut [7]. Second, we improve the anytime per-
formance of polyhedral multicut methods [11] by more efficient separation
procedures. Third, we introduce cluster-fusion moves, which extend the
original fusion moves [13] used in supervised segmentation to the unsuper-
vised case and give a polyhedral interpretation of this algorithm. Finally,
we propose two versatile proposal generators, and evaluate the proposed
methods on existing and new benchmark problems. Experiments show that
we can improve the computation time by one to two magnitudes without
worsening the segmentation quality significantly.
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