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Abstract

Pedestrian behavior modeling and analysis is important
for crowd scene understanding and has various applica-
tions in video surveillance. Stationary crowd groups are
a key factor influencing pedestrian walking patterns but
was largely ignored in literature. In this paper, a novel
model is proposed for pedestrian behavior modeling by
including stationary crowd groups as a key component.
Through inference on the interactions between stationary
crowd groups and pedestrians, our model can be used to
investigate pedestrian behaviors. The effectiveness of the
proposed model is demonstrated through multiple applica-
tions, including walking path prediction, destination pre-
diction, personality classification, and abnormal event de-
tection. To evaluate our model, a large pedestrian walking
route dataset 1 is built. The walking routes of 12, 684 pedes-
trians from a one-hour crowd surveillance video are manu-
ally annotated. It will be released to the public and benefit
future research on pedestrian behavior analysis and crowd
scene understanding.

1. Introduction

Pedestrian behavior modeling and analysis is important
in video surveillance and has drawn increasing attentions in
recent years. It can be used for various applications includ-
ing pedestrian walking path prediction [4, 45], traffic flow
segmentation [37, 41, 43], crowd counting and segmenta-
tion [40], and abnormal event detection [25, 27].

Pedestrian behavior modeling is challenging, especially
for scenes with crowds [8, 21]. Previous studies [5, 12, 42,
45] have shown that the walking behavior of an individual
can be influenced by a variety of factors including scene lay-
out (e.g. entrances, exits, walls, and obstacles), pedestrian
beliefs (the choice of source and destination), and interac-
tions with other moving pedestrians. However, an important
factor, i.e. stationary crowd groups, is missing in literature

1Available at http://www.ee.cuhk.edu.hk/∼syi/

(a) (b)

(c) (d)

(e) (f)

Figure 1. (a)-(b) Two video frames. (c)-(d) Energy maps calcu-
lated from (a) and (b) using the proposed model. Pedestrians are
more likely to walk through regions with warm colors. (e) An
illustration of multiple roles of a stationary crowd group. It can
serve as source (blue lines), destination (red lines), and obstacle
(black lines). (f) Energy map calculated from (b) without model-
ing the factor of stationary crowd groups.

of modeling pedestrian behaviors.
We argue that stationary crowd groups have considerable

influence on pedestrians and are crucial in pedestrian behav-
ior modeling. As shown in Figure 1 (d), the walking path of
a pedestrian (black curve) is affected by a stationary crowd
group. However, without modeling the stationary crowd
group, it is difficult to explain why the pedestrian detours
when approaching the destination, as shown in Figure 1 (f).

Studies also show that stationary crowd groups have
greater influences on pedestrian behaviors than moving
crowds [28, 38, 39]. A pedestrian usually changes the walk-
ing speed rather than direction to avoid collision with other
moving crowds. However, when moving crowds become
stationary, the walking pedestrian is forced to changed his
or her direction and the walking path is influenced signifi-
cantly.

As shown in Figure 1 (e), stationary crowd groups can



serve as multiple roles for different pedestrians. For pedes-
trians that are leaving or joining a stationary crowd group,
it can be regarded as the source or the destination (red and
blue curves). For other pedestrians that are moving near
the stationary crowd group, it can be regarded as an obsta-
cle (black curves). Although both stationary crowd groups
and fixed scene obstacles can block traffic, a pedestrian can
choose to walk through the stationary crowd group or to de-
tour from it, while scene obstacles are solid and cannot be
penetrated. Moreover, as shown in Figure 1 (a)-(d), the spa-
tial distribution of stationary crowd groups might change
over time, which leads to the dynamic variations of traffic
patterns. Therefore, static models cannot be used for sta-
tionary crowd group modeling.

In our work, the factor of stationary crowd groups is in-
troduced for the first time to model pedestrian behaviors.
Both walking through and walking bypass pedestrians can
be well modeled. The proposed model can be dynamically
updated with time to adapt the change of stationary crowd
groups.

Based on our model, we can investigate the influence of
stationary crowd groups on pedestrian behaviors. By learn-
ing model parameters, we observe that stationary crowd
groups have greater influence on pedestrian walking paths
than moving crowds, which shows the importance of mon-
itoring stationary groups in a traffic control system. More-
over, by modeling the interactions among stationary groups
and moving pedestrians, a personality attribute is proposed
to classify pedestrians into different categories. This at-
tribute is a key factor that makes each individual behave
differently. One interesting observation is that people are
more likely to behave in a conservative way when the scene
is not that crowded. In contrast, a crowded scene leads to
aggressive walking patterns because of the lack of space.

The contribution of this work is summarized as below.
(1) A novel model is proposed for pedestrian behavior mod-
eling by including stationary crowd groups as a key compo-
nent. Through inference based on the interactions between
stationary crowd groups and pedestrians, our model can be
used to investigate pedestrian behaviors. (2) A large pedes-
trian walking path dataset is built. The walking routes of
more than 12, 000 pedestrians from a one-hour crowd video
are annotated. (3) The effectiveness of the proposed model
is demonstrated by multiple applications on the proposed
dataset, including pedestrian walking path prediction (Sec-
tion 5.1), pedestrian destination prediction (Section 5.2),
pedestrian personality estimation and classification (Section
5.3), and abnormal event detection (Section 5.5).

2. Related Work
A lot of works have been done on modeling crowd mo-

tion patterns and segmenting traffic flows. Lagrangian co-
herent structures [2] and Lie algebra representation [22, 23]

were used for flow field computation and segmentation.
Topic models have been widely used [18, 37] for crowd
flow modeling and estimation. Spatio-temporal depen-
dency on motion patterns could be included in topic mod-
els [7, 13, 14]. Motion patterns could also be discovered
through clustering trajectories [15, 16, 24, 26, 36, 44]. Shao
et al. [33, 34] characterized the generic properties of crowd
systems by modeling the coherent motion crowd groups.

Agent based models [5] are in a different category, in
the sense that they model the decision making process of
individuals. A typical example is the social force model
[12], which was originally proposed for crowd simulation
[11], and then was used in tracking [29], interaction analysis
[31], and abnormal event detection [25].

Our proposed model is also agent-based. Existing agent
based models use pre-defined rules to control each indi-
vidual’s walking behavior, which can be used for simula-
tion and prediction. However, they have three main short-
comings compared with our model. First, stationary crowd
groups are ignored in all these models. A lot of research
works have been done on analyzing moving social groups
[6, 9, 19, 20]. The stationary crowd group is lack of atten-
tion, although it has great influence on pedestrian behaviors.
Second, most of these agent based models are static models
which cannot be dynamically updated with time. However,
the influence factors are changing and pedestrian interac-
tions also need to be updated with time. Third, most exist-
ing methods cannot model personality, which is a key factor
that makes each individual behave differently [10, 30].

Recently, Alahi et al. [1] built a large scale crowd
dataset for forecasting pedestrian destinations. However,
that dataset only provides trajectories of moving pedestrians
without video frames, and cannot be used to study the influ-
ence of stationary crowds on pedestrian behaviors. There-
fore, we built a new crowd dataset with both manually an-
notated trajectories and video frames.

3. Pedestrian Behavior Modeling
Human walking path selection is similar to water flow. A

pedestrian usually selects the most convenient and efficient
path for reaching the destination. Based on this assumption,
a general scene energy map M is proposed to model the
traveling difficulty of every location of the scene.

Regions with higher energy values denote that pedestri-
ans are energetic at these locations and can travel through
these locations more easily. More pedestrians tend to
choose their walking paths through, and therefore the prob-
ability of observing pedestrians at these locations should be
higher. Lower energy values indicate locations with lower
occurrence probability of pedestrians. For example, areas
near an obstacle or inside a stationary crowd group are dif-
ficult to walk through. The probability of observing pedes-
trians at these locations is lower.



In our model, scene layout, moving pedestrians, and sta-
tionary groups are included. Different factors may have dif-
ferent effects on pedestrian decision making. Their influ-
ence weights are learned from training data and reflect the
importance of these factors.

Personalized energy maps MP are generated based on
the general energy map M and a personality parameter P .
MP can be viewed as different pedestrians’ interpretations
of the general map M. Given a source and a destination,
the fast marching algorithm [17, 32] is used to generate an
optimal walking path in the energy map.

3.1. General energy map modeling
A general energy map M can be modeled with three

channels calculated based on Scene Layout, Moving
Pedestrians, and Stationary Groups. These channels are
represented by fSL, fMP , and fSG. M(x) can be pixel-
wisely modeled by combining the channels,

M(x; Θ) = fSL(x; θ1)fMP (x; θ2)fSG(x; θ3, θ4), (1)

where Θ = [θ1, θ2, θ3, θ4]
T are weighting parameters for

different terms. M is also a probability map and can be
used as the probability of pedestrian appearing at each loca-
tion. It can be extended by including new channels.

3.2. Scene layout factor

Pedestrian’s walking behavior is constrained by scene
layout. Pedestrians cannot walk freely in a scene due to the
constraints of walls and other static obstacles, and therefore
they cannot be observed at some locations. More over, peo-
ple tend to keep a distance from these obstacles and are not
likely to walk very close to them, and thus the probability of
observing a pedestrian decreases when getting close to the
obstacle regions.

The Scene Layout influence map is therefore modeled as

fSL(x; θ1) = exp

(
− θ1
d1(x, SL)

)
, (2)

where SL is a set of locations occupied by scene obstacles
which are unreachable, d1(x, SL) = miny∈SL ||x− y||22
measures the distance from the current location x to its near-
est scene obstacle location y, and θ1 is a parameter indicat-
ing the influence bandwidth (which also can be viewed as
the importance) of the scene layout term.

If x ∈ SL, there is an obstacle at location x, and
d1(x, SL) = 0. In this case, fSL(x; Θ) is equal to 0, which
means that pedestrians cannot appear at location x. When
x /∈ SL, d1(x, SL) > 0. fSL(x; Θ) gets close to 0 when
the current location x approaches to scene obstacles. An
example of a scene layout map is shown in Figure 2.

3.3. Influence of moving pedestrians

The interaction with other moving pedestrians is another
factor to be considered. A pedestrian tends to keep certain
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Figure 2. Example of scene layout influence maps. (a) Scene back-
ground. (b) The energy values along the white horizontal lines in
(c) and (d). The color bar indicates the energy values displayed in
(c) and (d). (c)-(d) Two scene influence maps calculated by setting
θ1 as 0.01 and 0.05, respectively. Energy drops near the scene
boundaries.
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Figure 3. Example of moving pedestrian influence maps. (a) A
video frame. (b) The energy values along the white horizontal
lines in (c) and (d). (c)-(d) Two moving pedestrian influence maps
calculated by setting θ2 as 0.01 and 0.05, respectively. Energy
drops around moving pedestrian.

distance from others. As a result, there is a probability drop
around the regions occupied by pedestrians.

The Moving Pedestrian influence map is modeled as

fMP (x; θ2) = exp

(
−

m∑
i=1

θ2
d2(x,MPi)

)
, (3)

where MPi (i ∈ [1,m]) is the ith moving pedestrian, xMPi
t

is the spatial location of MPi at current time t, xMPi
t+1 is

used to estimate the spatial location of MPi at time t + 1,
d2(x,MPi) = (||x−xMPi

t ||+ ||x−xMPi
t+1 ||)2− (||xMPi

t −
xMPi
t+1 ||)2 measures the distance from the current location

x to the moving pedestrian MPi, and θ2 is the influence
bandwidth of the moving pedestrian term. We use the same
distance metric as the social force model [11]. An example
of a moving pedestrian influence map is shown in Figure 3.

3.4. Influence of stationary crowd groups

Stationary crowd groups are modeled in two aspects.
First, for pedestrians that bypass a stationary crowd group,
this stationary crowd group acts similarly as a scene obsta-
cle. The group has a repulsive force around the group region
to keep moving pedestrians away. Second, for pedestrians
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Figure 4. Example of stationary crowd group influence maps.
(Left) Three stationary crowd group influence maps calculated
from the same frame by using different θ3 and θ4. (Right) The
energy values alone two vertical lines (a) and (b) in (Left). Com-
paring the two red curves, we notice that the stationary group re-
gions may have non-zero energy values by setting a nonzero θ4.
Different groups may have different energy values due to the den-
sity differences. By setting θ4 = 0, the differences disappear and
the energy values inside the groups turn to zero.

that walk through a stationary crowd group, there should be
a penalty inside the group region. This is the key difference
with the scene layout factor, where obstacles cannot be pen-
etrated. The penalty is related to crowd density. It is more
difficult to walk through denser stationary crowds.

The Stationary Group influence map is modeled as

fSG(x; θ3, θ4) = exp

(
−

n∑
i=1

θ3
d3(x, SGi) + θ4d4(SGi)

)
, (4)

where SGi(i ∈ [1, n]) is the ith stationary crowd group re-
gion automatically detected by using the approach proposed
in [39], d3(x, SGi) = miny∈SGi

||x− y||22 measures the
distance from x to the stationary crowd group region SGi,
θ3 is the influence bandwidth of the stationary crowd group
term, and d4(SGi) ∈ (0,+∞) is used to measure the spar-
sity of stationary crowd group region SGi. d4 is calculated
as the average distance among group members. Larger d4
represents lower crowd density. The weight θ4 controls the
influence of group sparsity on estimation result.

If x ∈ SGi, the location x is inside SGi, and
d3(x, SGi) = 0. fSG(x; Θ) at locations x ∈ SGi inside
the group is constant and is positively correlated with group
sparsity d4(SGi). fSG(x; Θ) is in the range of (0, 1), which
means that the probability of observing a pedestrian walk-
ing through the group region decreases because of the in-
fluence of the stationary group, but it is still larger than 0.
If x /∈ SGi, x is outside SGi, and d3(x, SGi) > 0. The
influence value increases from group boundary to faraway
locations. An example of a stationary crowd group influ-
ence map is shown in Figure 4.
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Figure 5. Example of a personalized maps. (Left) Three personal-
ized maps calculated from the same frame using different P (P is
set as 0.5, 1.0, 1.5 from top to bottom). (Right) The energy values
alone line (a) and (b) in (Left).

3.5. Personalized energy map modeling
People might behave differently under the same situa-

tion. It is modeled by a personality parameter P . Different
personalized energy maps MP are generated based on the
general energy map M with different P values,

MP (x; Θ) = exp (P × lnM(x; Θ)). (5)

If P is large for a pedestrian, the influence bandwidth of all
the terms (θ1, θ2, θ3) would equivalently increase for this
individual. The energy values are small at locations near
obstacles and stationary crowd groups. It denotes that this
pedestrian cares more about these influence factors and is
likely to walk a longer way to avoid close contact with these
obstacles. In contrast, smaller P means that the pedestrian
is walking aggressively and cares less about obstacles. An
example of a personalized map is shown in Figure 5.

3.6. Path generation
To generate pedestrian walking paths, Fast Marching

[17, 32] is used. Given the source xs and the destination xd,
an optimal path T̂ is calculated based on the energy map M
or MP :

T̂ = fFM (M(MP ), xs, xd), (6)

where T̂ is the most efficient and probable route from xs to
xd according to the current energy map M or MP . Several
examples are shown in Figure 6. When using a personalized
map MP , the optimal path is just for the specific individ-
ual. When using a general map M, the optimal path can be
regarded as an average path for ordinary pedestrians.

3.7. Model learning
For a scene, model parameters Θ need to be estimated

from training data. The values in an energy map M rep-
resent the probabilities of pedestrian appearing at locations.



Figure 6. Example of path generation. The red point is a source.
Green points are destinations. Black curves are optimal walking
routes calculated by Equation (6).

Therefore, model parameters can be optimized by maximiz-
ing likelihood on the training data. A general energy map
M is built based on Equation (1). By dividing a marginal-
ization term, Z(Θ), the energy map M(x; Θ) can be trans-
formed to a probability distribution,

p(x; Θ) =
1

Z(Θ)
M(x; Θ), (7)

where Z(Θ) =
∫ M(x; Θ)dx.

Given X = {x1, ..., xk, ..., xK} as K independent ob-
servations of x, the likelihood of these observations is

p(X; Θ) =

K∏
k=1

1

Z(Θ)
M(xk; Θ). (8)

Parameter Θ can then be optimized as

Θ̂ = argmax log p(X; Θ). (9)

Gradient descent is used for updating parameters.

Θnew = Θold + η
∂log p(X; Θold)

∂Θold
. (10)

4. Pedestrian walking route dataset
4.1. Dataset details

Pedestrian walking route data with accurate annotation
can be used for model learning and evaluation. However,
automatically tracking, especially in crowded scenes, is not
accurate. Several existing datasets [1, 3, 35] have limita-
tions and cannot be used in our study. Most of these datasets
are not long enough, not crowded enough, or do not contain
enough pedestrians. The dataset proposed by [1] is large,
but contains only trajectories without video frames, and thus
cannot be used to detect and analyze stationary crowds.

A new large scale pedestrian walking route dataset 2 is
built in this work. Accurate pedestrian walking routes from
a one-hour crowd video were manually annotated as ground
truth. The video was from the dataset released in [44]. The
details of the dataset are summarized in Table 1. Twelve
example pedestrian walking routes are shown in Figure 7.

2Available at http://www.ee.cuhk.edu.hk/∼syi/

Resolution (pixel) 1,920 × 1,080
Total frame number 100,000

Frame rate (fps) 25
Annotated frame number 5,000

Annotated frame rate (fps) 1.25
Annotated pedestrian number 12,684

Average pedestrian number per frame 123
Max pedestrian number per frame 332

Table 1. The details of the proposed dataset.

Figure 7. Twelve examples of annotated walking routes.

The proposed dataset has several advantages compared
with existing ones. First, our dataset is much longer than
any existing one with ground truth on tracking. Long-term
traffic flow change can be observed from our dataset and
it contains rich information to train a complex model of
pedestrian behaviors. Second, it is a crowd surveillance
dataset which is difficult and challenging for vision tasks.
An average of 123 pedestrians can be observed in each
frame. The most crowed frame contains 332 pedestrians.
Complex crowd behaviors can be observed in this dataset.
Third, this dataset is well annotated. All the 12, 684 pedes-
trians in this video are manually annotated. For each indi-
vidual, the complete trajectory from the time point he/she
enters the scene to the time he/she leaves is labeled. The
large amount of data with accurate annotation is crucial for
comprehensive evaluation and convincing statistical analy-
sis. Besides pedestrian behavior modeling, our dataset can
be used in various research areas, such as pedestrian detec-
tion, individual tracking, crowd segmentation, density esti-
mation, and pedestrian counting.

4.2. Statistical analysis of the annotated data

A lot of statistical information can be obtained from this
dataset, and such information is valuable for the design of
the supervised model. The influence of stationary crowds
on pedestrian walking efficiency is analyzed in Figure 8.
We record the dynamic changes of (a) the percentage of
stationary pedestrians and (b)-(c) two efficiency measure-
ments. Larger values in (b)-(c) indicate lower efficiency.
The strong correlations between (a) and (b)-(c) indicate that
stationary crowd is a key factor that decreases traffic effi-
ciency. In contrast, the correlations between total crowd
density and (b)-(c) are much weaker. If every pedestrian is
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Figure 8. Correlations between stationary crowds and traffic ef-
ficiency. (a) Percentage of stationary pedestrians. (b) Average
walking path length. (c) Average traveling time. The correlations
between (a) and (b)-(c) are +0.754, and +0.753. The correlations
between total crowd density and (b)-(c) are −0.061, and −0.121.

Parameter Meaning Learned value

θ1 Scene layout weight 0.016
θ2 Moving pedestrian weight 0.023
θ3 stationary crowd group weight 0.390
θ4 Group density weight 0.006

Table 2. Learned parameter values for the proposed dataset.

moving, traffic flow is smooth and efficient even when the
scene is very crowded. However, when stationary crowd
groups appear, the traffic efficiency might be dramatically
reduced.

4.3. Learning result

The trajectories of moving pedestrians are used as train-
ing samples to learn model parameters. The optimized pa-
rameters are shown in Table 2. Comparing θ3 with θ1 and
θ2, we observe that the stationary crowd groups have greater
influence on pedestrian walking behaviors than scene lay-
out and moving pedestrians. The learned θ4 is greater than
zero, which indicates that the stationary crowd group den-
sity does influence pedestrian behaviors.

A pedestrian is not sensitive to scene obstacles, because
scene obstacles can never move and he/she does not need
to consider possible collisions with these obstacles. A
pedestrian might prefer to adjust walking speed rather than
change pre-decided walking direction to avoid close contact
with other moving pedestrians. The walking path might be
slightly changed but the influence is not obvious. When
stationary crowds emerge in front of a pedestrian, he/she
has to change his/her walking route to bypass the stationary
crowds. This is the reason why stationary crowd group in-
fluence weight θ3 is much larger than scene layout weight
θ1 and moving pedestrian weight θ2.

5. Applications
Based on the proposed model, inference and learning

algorithms, various applications can be implemented and
interesting characteristics about human walking behaviors
can be revealed.

(a1) Observation (a2) Prediction η = 9.7%

(b1) Observation (b2) Prediction η = 4.7%

(c1) Observation (c2) Prediction η = 74.6%
Figure 9. Examples of prediction results. (a)-(b) Predictions well
match the observations and η is small. (c) A pedestrian walks in
an unexpected path. The walking cost of the observation is much
higher than that of the predicted path from optimization. There-
fore, the over-cost is high (η = 74.6%). This activity can be
regarded as abnormal and η can be used for abnormal detection.

5.1. Prediction on pedestrian walking paths

Given a source xs and a destination xd, we predict an
optimal walking route as T̂ = fFM (M, xs, xd) by mini-
mizing Equation (6). In this application, we assume P = 1
as no prior on personality of pedestrians is given.

An over-cost value η is proposed to evaluate whether
predictions match observations. For the optimized route T̂
and the observed route TO, the walking costs are calculated
based on the energy map M. Over-cost η is defined as

η =
C(TO,M)− C(T̂ ,M)

C(T̂ ,M)
, (11)

where C(TO,M) is the walking cost of the observed route
TO based on the current map M, and C(T̂ ,M) is the cost
of the optimized route T̂ . η should be nonnegative because
C(TO,M) is no smaller than C(T̂ ,M), and smaller η in-
dicates better match. Examples of prediction results are
shown in Figure 9.

Two baselines are used to investigate the effectiveness of
the proposed model considering stationary crowd groups.
For the first baseline, we set θ3 = 0, which denotes that the
stationary crowd group factor is removed. For the second
one, we set θ4 = 0, which denotes that the stationary crowd
groups are simply regarded as solid obstacles. The η distri-
butions of our method and the baselines are shown in Figure
10. The average over-cost of our method is 5.86%, while the
over-costs of the baselines are much high, i.e. 15.44% and
16.22%, respectively. Because abnormal pedestrians may
have relatively high η, we also calculate the average over-
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Figure 10. Distributions of over-cost η. Over-cost values of
10, 000 pedestrians are calculated with our model and the two
baselines. They are sorted in an increasing order for each method.

Figure 11. Ten source / destination regions of the scene.

cost of 80% pedestrians with smaller η. For these pedes-
trians, the average over-cost of our method is 2.70%, while
over-costs of the baselines are 4.79% and 9.46%. From the
results, we can conclude that including the influence of sta-
tionary crowd groups is necessary when modeling pedes-
trian behaviors, and the stationary crowd groups should be
modeled differently from scene obstacles.

5.2. Prediction of pedestrian destinations

The source xs, the destination xd, and the walking path
T are the three basic elements of pedestrian behaviors. In
Section 5.1, we predict T based on xs and xd. Given xs and
part of the walking path, we can also predict the destination
of this pedestrian.

Ten source/destination regions Si(i ∈ [1, 10]) are man-
ually labeled as shown in Figure 11. The first half of
observed trajectory T0.5 is used as input in this experi-
ment. Given xs and T0.5, the task is to estimate the des-
tination index i ∈ [1, 10]. For each destination region Si,
L(i) is calculated as L(i) = minx′

d∈Si
D(T0.5, T̂0.5(x

′
d)),

where T̂0.5(x
′
d) is the first half of T̂ (x′

d), T̂ (x′
d) =

fFM (M, xs, x
′
d) is the optimized route ended with x′

d, and
D(·, ·) represents the distance between the two half trajec-
tories. Smaller L(i) indicates that the pedestrian is more
likely to go to the destination Si. Then the index of esti-
mated destination is obtained as î = argmini∈[1,10] L(i).

The top N accuracy (ground truth is within the top N pre-
dictions) is adopted for evaluation. The MDA model [45],
together with the two baselines introduced in Section 5.1 are
used for comparison. Estimation results are shown in Table

N 1 2 3 4 5

Proposed 48% 69% 83% 90% 93%
θ3 = 0 38% 68% 82% 90% 93%
θ4 = 0 33% 57% 71% 80% 87%

MDA [45] 43% - - - -

Table 3. Accuracy of destination prediction. Top N accuracy is
calculated. Our method can obtain better results than others.

(a1) Observation (a2) Good prediction

(b1) Observation (b2) Abnormal case
Figure 12. Two examples of destination prediction. (a1)-(b1) Ob-
served walking routes. The first half (red part) of the observed
walking path is used as input. (a2)-(b2) Prediction results. The
values of Li for different destinations are shown. The estimated
destination is chosen as the one with minimal Li (blue curve). In
example (b), our model makes wrong prediction due to the sudden
and unexpected turning of the pedestrian.

3. The destinations of 48% pedestrians can be successfully
predicted at the first trial using our algorithm.

Two examples of destination prediction are shown in
Figure 12. For some pedestrians, the walking paths are un-
usual and it is difficult to estimate the correct destinations
at first several trials. These walking routes can be regarded
as abnormal. In this way, destination prediction can be used
for abnormal behavior detection.

5.3. Personality attribute estimation
The personality P of each individual can be estimated by

P̂ = argmin
P

D(TO, T̂ (P )), (12)

where TO is the observed trajectory of current pedestrian,
T̂ (P ) = fFM (MP (P ), xs, xd) is the optimal walking path
calculated using personalized energy map MP in Equa-
tion (6), and D(·, ·) represents the distance between the two
trajectories. The estimated personality parameter P̂ mini-
mizes the difference between observation TO and optimal
path T̂ (P ). An example is shown in Figure 13.

The distribution of P is shown in Figure 14. All the
pedestrians can be classified into three categories based on
their walking behaviors: aggressive, conservative, and ab-
normal. The peak A in Figure 14 represents aggressive
pedestrians who prefer to walk directly to their destina-
tions. Conservative pedestrians are represented by the peak



(a) Observation (b) P = 0.1

(c) P = 1.0 (d) P = 1.5
Figure 13. (b)-(d) The predicted walking paths and their corre-
sponding personalized energy maps MP . A smaller P may lead
to a more straight walking route while a larger P may lead to a
longer walking path that keeps away from stationary crowds. This
pedestrian is walking in a conservative manner because the obser-
vation shown in (a) is more similar to the walking path in (d) with
large P .

Figure 14. Personality value distribution. Two peaks A and B,
and the long tail can be observed in this figure. The peak B is
larger than 1 and the peak A is smaller than 1. When P = 1, the
personalized map is degenerated into the general energy map.

B. They prefer to walk in a longer way to avoid close contact
with others. The long tail of the distribution of P represents
pedestrians that take a long route to their destination. Con-
servativeness is no longer proper to describe these pedestri-
ans and we define these behaviors as abnormal.

5.4. Further investigation on personality

Personality attribute P can be used for pedestrian classi-
fication as different P may lead to different walking behav-
iors. All the pedestrians are annotated into three categories
as ground truth, i.e. aggressive, conservative, and abnormal.
Bayesian classifiers (that minimize classification errors) are
used to classify these three categories. The leave-one-out
evaluation results are shown in Table 4. Among all the an-
notated pedestrians, 87.43% are correctly classified using P
as the feature value.

We also explore the relationship between the personality
value P and the scene population density. The quantitative
correlation between the two values is −0.44, and the dy-
namic changes of the two quantities are shown in Figure 15.
The negative correlation shows that the personality value P
is negatively related to the scene population density. This
finding is reasonable. When the scene is too crowded, the

Category Aggressive Conservative Abnormal

Total number 8,062 4,322 1,572
Correctly classified 7,123 3,668 1,411

Accuracy(%) 88.35 84.87 89.76

Table 4. Pedestrian classification results based on personality.

0 500 1000 1500 2000
Frame index

Totol pedestrian number
Average personality value

Figure 15. The relation between the scene population and average
personality value. The black curve is the average personality value
at each time. It is anti-related to the scene population density.

walking behaviors of pedestrians are constrained and there
is no enough space for conservative walking patterns. In
order to reach destinations, close contact with each other is
unavoidable.

5.5. Abnormal behavior detection

Abnormal behaviors can be defined as unexpected ob-
servations which are significantly different from our pre-
dictions. Walking path prediction (Section 5.1) and desti-
nation prediction (Section 5.2) can both be used for abnor-
mal detection. Examples have been shown in Figure 9(c)
and 12(b). Moreover, personality estimation based abnor-
mal detection has been introduced in Section 5.4.

6. Conclusion
In this paper, a novel pedestrian behavior model is pro-

posed and the stationary crowd group influence is included
as a key component. It is applied to various applications, in-
cluding walking path prediction, destination prediction, per-
sonality estimation, and abnormal event detection. A new
pedestrian walking route dataset is proposed and will bene-
fit future studies on pedestrian behavior analysis.
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