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Given two sets of m random vectors X ∈ Rdx×m and Y ∈ Rdy×m, let their
covariances be Σxx and Σyy respectively, and let the cross covariance be Σxy.
Canonical correlation analysis (CCA) seeks pairs of linear projections that
maximise the correlation of the two views:
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yy , and let the singular value decomposition (SVD)

of T be T =UDV T . It is shown in [1] that the gradient of the total correlation
with respect to X is given by:
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and ∂corr(X ,Y )
∂Y has a symmetric form.

Using the insight that the the gradient of the correlation sought in CCA
can be computed in Eq. (2), deep canonical correlation analysis (DCCA) [1]
propagates the gradient along the two branches of a deep neural network,
achieving end-to-end learning.

In [1] DCCA is applied to medium-sized problems where dx and dy are
in the order of 101. Moreover, it is evaluated in terms of total correlation
obtained in the learnt latent space, which is not the final goal of real-world
applications. In this paper, we employ DCCA to learn a latent space for
matching images and text, where the number of features required to encode
the rich information is in the order of 103 [3, 4]. To this end, we propose
to process image and text in the two branches of the network, and carefully
address complexity and overfitting issues.

Figure 1: Log-log plot of speed of SVD solvers. The GPU based CULA
solver is two to three orders of magnitude faster than CPU based ones when
matrix is 4096 × 4096.

We implement the CCA loss layer on a GPU with the CUBLAS and
CULA libraries. For comparison we also implement the layer using several
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CPU based linear algebra libraries. Figure 1 compares the time needed to
solve an SVD with various libraries, where OpenCV, LAPACK, Eigen are
CPU based and CULA is GPU based. When d is in the order of 103, CULA
is typically two to three orders of magnitude faster. For example, when
d = 4096, CULA takes only 16.3 seconds, while LAPACK, OpenCV and
Eigen take 4922.6, 6714.5 and 22971.1 seconds, respectively.

Other linear operations such as matrix multiplication and the Cholesky
decomposition required for matrix inversion also get a significant speedup
with CULA and CUBLAS. Overall each iteration for a batch of size m= 100
takes approximately 26.5 seconds to complete. Since typically thousands of
iterations are needed for the network to converge, it is clear that the migra-
tion from CPU to GPU is a crucial step for DCCA to be practically employed
in our problems.

We evaluate the DCCA learning scheme on three image-text parallel
datasets, namely Flickr8K, Flickr30K, and IAPR TC-12. We follow the
common practice on these datasets and compute the average recall of the
gold item at position 1, 5, 10 of the ranked list (R@1, R@5, R@10), and the
median rank (MR) of the gold item, for both image annotation and image
retrieval tasks. Results for the image annotation task on Flicker30K dataset
are shown in Table 1.

R@1 R@5 R@10 MR

Protocol I
transfer CCA [3] 32.8 / 32.4

DCCA 32.5

Protocol II

DeViSE [2] 4.5 18.1 29.2 26
SDT-RNN [6] 9.6 29.8 41.1 16

Deep Fragment [5] 16.4 40.2 54.7 8
DCCA 16.7 39.3 52.9 8

Protocol III DCCA 27.9 56.9 68.2 4

Table 1: Performance on Flickr30K: image annotation

The results in Table 1 indicate that under protocol I the transfer CCA
in [3] achieves an R@10 score of 32.8 and 32.4 when using Flickr1M and
SBU1M as additional training data respectively, where Flickr1M and SBU1M
each contain 1 million image-caption pairs. Our method has an R@10 score
of 32.5, which is on par with [3] but does not use additional data for training.
On the other hand, when no extra data is used for training, the performance
of the proposed learning scheme is comparable to that of [5], which is the
state of the art on this dataset under protocol II.
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