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Figure 1: We reconstruct rental apartments from a set of monocular images
and a floor plan.

The goal of this paper is to enable a 3D “virtual-tour” of an apartment given
a small set of monocular images of different rooms, as well as a 2D floor
plan. We frame the problem as the one of inference in a Markov Random
Field which reasons about the layout of each room and its relative pose (3D
rotation and translation) within the full apartment. This gives us informa-
tion, for example, about which room the picture was taken in. What sets us
apart from past work in layout estimation [1, 3, 4, 6] is the use of floor plans
as a source of prior knowledge. In particular, we exploit the floor plan to
impose aspect ratio constraints across the layouts of different rooms, as well
as to extract semantic information, e.g., the location of windows (which are
labeled in floor plans) and scene type. We show that this information sig-
nificantly helps in resolving the challenging layout estimation and camera
localization problem. We also derive an efficient exact inference algorithm
which takes only a few ms per apartment. This is due to the fact that we
exploit integral geometry as well as our new bounds on the aspect ratio of
rooms which allow us to carve the space, significantly reducing the number
of physically possible configurations. We demonstrate the effectiveness of
our approach on a new dataset which contains over 200 apartments.

New Dataset: Since our goal here is to reconstruct apartments in 3D,
we collected a new dataset by crawling a rental website. The 215 apart-
ments have in total 1312 rooms, 6628 walls, 1923 doors, and 1268 win-
dows. The number of photos in each apartment ranges from 2 to 30, with
the total number of photos in our dataset being 1259, not counting the
outdoor images. We collected ground-truth for room layout in each im-
age, scene type, room in which the photo was taken, and finally, which
wall in the apartment the camera is facing. The dataset is available online:
www.cs.utoronto.ca/⇠fidler/projects/rent3D.html.

Layout Estimation: Our goal is to estimate an accurate layout for each
room from a set of monocular images and to relate each layout to the full
apartment via its 3D pose (rotation and translation). We phrase the problem
as minimization of an energy E. In addition to well known layout cues such
as orientation maps [3] and geometric context [1, 2] subsumed in an energy
term Elayout, we exploit rich information contained in the apartment’s floor
plan as additional source of information. More specifically, we make use of
the floor plan in order to retrieve information about aspect ratios of the walls
for each room. The room layouts across images are linked by the fact that all
rooms share the same height in 3D, which imposes aspect ratio constraints
to the layout estimation problem, summarized in the energy term Eas-ratio.
Further we also make use of semantics in the form of windows for which
typically the floor plan contains additional ratio constraints. Windows are
shown to be a very useful cue for the camera localization problem since
they break the symmetry of parallel walls. We therefore add a term Ewin.
We additionally predict scene type for each image which helps us position
the image into the correct room in the apartment. We use structured predic-
tion [7, 8] to train our model and follow [5] in designing a branch-and-bound
inference algorithm that runs in a real-time.
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Layout error Evaluations Test time [s]
[5] 13.88 16012.4 0.0150

Ours 11.90 1271.5 0.0037

Table 1: Layout estimation accuracy – pixel wise error
Aspect +Scene +Room

Random 0.0328 0.1138 0.1954
Ours (no windows) 0.0686 0.1945 0.2654
Ours (windowGT) 0.2128 0.4737 0.5995

Ours (window) 0.1670 0.3982 0.5080
Table 2: Localization error (correct assignment of front to apartment wall)

Results: In Tab. 1 we evaluate a setting in which we know which wall
the camera is facing. In this case, our method uses the correct aspect ratio
of the walls. We compare the effectiveness of using this cue against the
baseline method [5]. Not only do we improve the prediction performance,
but also are we able to reduce inference time by one order of magnitude. In
Tab. 2 we evaluate the camera localization problem. We demonstrate how
the localization error, i.e., estimation of which wall the camera is facing,
improves when incorporating one cue at a time: the aspect ratio information,
window energy term Ewin using perfect features (“windowGT”) and using a
trained classifier for “window”. Here +Room denotes the setting in which
the algorithm is given information in which room each photo was taken in.
Fig. 2 shows a few qualitative examples.

Figure 2: Room layout estimation and wall alignment with our model. Top
row show the estimated vertical walls (solid color), and GT layout (dashed
lines). Bottom row shows the floor plans with predicted and GT alignments.
Solid colors show alignment predicted by the model, where the yellow solid
line denotes the front wall. GT alignment is shown with dashed lines.
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