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In recent years, the convolutional neural network (CNN) [5] has achieved
great success in many computer vision tasks [2, 4]. Partially inspired by neu-
roscience, CNN shares many properties with the visual system of the brain.
A prominent difference is that CNN is typically a feed-forward architecture
while in the visual system recurrent connections are abundant [3]. It is gen-
erally believed that recurrent synapses contribute to context modulation [1],
which is important to the processing visual signals.

Inspired by this fact, we propose a recurrent CNN (RCNN) for object
recognition by incorporating recurrent connections into each convolutional
layer. The key module of RCNN is the recurrent convolutional layer (RCL)
(Figure 1, left). The states of RCL units evolve over discrete time steps. For
a unit located at (i, j) on the kth feature map in an RCL, its net input zi jk(t)
at time step t is given by:

zi jk(t) = (w f
k )

T u(i, j)(t)+(wr
k)

T x(i, j)(t −1)+bk. (1)

In the equation u(i, j)(t) and x(i, j)(t −1) denote the feed-forward and recur-
rent input, respectively, which are the vectorized patches centered at (i, j)
of the feature maps in the previous and current layer, w f

k and wr
k denote the

vectorized feed-forward weights and recurrent weights, respectively, and bk
is the bias. The first term in 1 is used in standard CNN and the second term
is induced by the recurrent connections. The activity or state of this unit
is a function of its net input xi jk(t) = g( f (zi jk(t))), where f is the rectified
linear activation function and g is the local response normalization (LRN)
function [4]. Unfolding this layer for T time steps results in a feed-forward
subnetwork of depth T +1. While the feed-forward input remains the same,
the recurrent input evolves over iterations. The effective RF of an RCL unit
in the feature maps of the previous layer expands when the iteration number
increases.

RCNN contains a stack of RCLs, optionally interleaved with max pool-
ing layers. Training is performed by minimizing the cross-entropy loss func-
tion using the backpropagation throught time (BPTT) algorithm [8]. This is
equivalent to using the standard BP algorithm on the time-unfolded network.
If we unfold the recurrent connections through time, the model becomes a
very deep feed-forward network. In addition, there are many shorter paths
with different lengths.

From the computational perspective, the recurrent connections in RCNN
offer several advantages. First, they enable every unit to incorporate con-
text information in an arbitrarily large region in the current layer. As the
time steps increase, the state of every unit is influenced by other units in a
larger and larger neighborhood in the current layer (equation (1)); as a con-
sequence, the size of regions that the unit can “watch" in the input space
also increases. In CNN the RF size is fixed, and “watching” a larger region
is only possible for units in higher layers. But unfortunately the context seen
by higher-level units cannot influence the states of the units in the current
layer. Second, the recurrent connections increase the network depth while
keep the number of adjustable parameters constant by weight sharing. This
is consistent with the trend of modern CNN architecture: going deeper with
relatively small number of parameters [6, 7]. Note that simply increasing
the depth of CNN by sharing weights between layers can result in the same
depth and the same number parameters as RCNN, but such a model may not
compete with RCNN in performance, as verified in our experiments. We
attribute this fact to the difficulty in learning such a deep model. Then here
comes the third advantage of RCNN — the time-unfolded RCNN is actu-
ally a CNN with multiple paths between the input layer to the output layer
(Figure 1), which may facilitate the learning. On one hand, the existence of
longer paths makes it possible for the model to learn highly complex fea-
tures. On the other hand, the existence of shorter paths may help gradient
backpropagation during training.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: The overall architecture of RCNN. Left: An RCL is unfolded
for T = 3 time steps, leading to a feed-forward subnetwork with the largest
depth of 4 and the smallest depth of 1. At t = 0 only feed-forward com-
putation takes place. Right: The RCNN used in this paper contains one
convolutional layer, four RCLs, three max pooling layers and one softmax
layer.

The model is tested on CIFAR-10, CIFAR-100, MNIST and SVHN.
With fewer trainable parameters, RCNN outperforms the state-of-the-art
models on all of these datasets. Increasing the number of parameters leads to
even better performance. Detailed results are described in the paper. These
results demonstrate the advantage of the recurrent structure over purely feed-
forward structure for object recognition.
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