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We propose a method to match a bag of unstructured regions between two
RGBD images. Instead of relying on segmentation algorithms to give con-
sistent partitions, we resort to a large set of region candidates from different
segmentation methods. Our method automatically selects the best set of
regions and match them simultaneously. Fig. 1 shows an example of re-
gion matching using the proposed method. The fundamental problem of
our region selection and matching task is min-cost bipartite matching with
global region constraints as shown in Fig. 1(e). Traditional bipartite match-
ing minimizes the matching costs with the constraint that each site from
one image at most matches one site on the other image. To match a bag of
overlapping regions, the optimization has to satisfy more conditions such as
the max-covering constraints, overlapping penalty constraints, and the num-
ber constraints. Previous min-cost bipartite matching methods, such as the
Hungarian algorithm, cannot be directly used any more. Region matching
methods [1, 2] also cannot be used to solve the proposed problem. Finding
the global optimal solution of the proposed region matching problem is a
challenging combinatorial problem, which has not been studied before.

We formulate region matching between RGBD images as the following
integer linear program.

min ∑
i∈I, j∈J

ci, jzi, j +∑
i∈I

(φ li +µli fi + γ)xi+ (1)

∑
j∈J

(φr j +µr jg j + γ)y j−η( ∑
m∈M

pm + ∑
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s.t. xi = ∑
j∈J

zi, j, y j = ∑
i∈I

zi, j ∑
i∈Pm

xi ≥ pm, ∀m ∈M, ∑
j∈Qn

y j ≥ qn, ∀n ∈N

x,y,z = 0 or 1, 0≤ p,q≤ 1

We use binary variable zi, j to indicate the matching from region i ∈ I in
source image to region j ∈ J in target image. If the matching is true zi, j = 1
and otherwise 0. ci, j is the cost of matching region i to region j. We also
introduce variables xi and y j, which are the region selection variables on
image one and two for region i and j respectively. If a region is selected in
the matching, the corresponding selection variable is 1, and otherwise 0. We
require the regions selected for matching to have small overlaps by penaliz-
ing the overall region size. li and r j are number of pixels in region i and j in
source and target images. We also enforce the max-covering constraints. We
partition the source and target images into small tiles. We use pm to indicate
whether tile m in source image is covered by a selected region; pm = 1 if the
tile is covered and otherwise pm = 0. Similarly we denote qn as the indicator
variable for tile n in target image. In the formulation, fi is the concavity of
region i in image one and g j is the concavity of region j in image two. We
penalize the overall concavity of selected regions. φ ,µ,γ and η are weight
coefficients.

The integer linear program is a hard combinatorial problem. We solve
it with a branch and bound method. Our integer program has the following
structure:

min(cT z− eT w) s.t. Az≤ 1, Bz≥ w, 0≤ w≤ 1, z is binary, (2)

in which c, for which we abuse the notation a bit, is determined by the local
matching cost, the area intersection cost, the concavity cost and the number
cost, z denotes the vector of matching variables, e is the weight for the cov-
ering variables w, which are p and q in the original notation. The x and y
terms have been absorbed into the z terms. Az≤ 1 is the bipartite matching
constraint, Bz ≥ w is the max-covering constraint, and other constraints set
the bounds for variables.

Its Lagrangian relaxation, maxλ min[cT z−eT w+λ T (w−Bz)], is much
easier to solve than the original integer program. For each given λ , the
internal minimization can be separated:

[P1]: min(cT −λ
T B)z, s.t. Az≤ 1,z is binary. (3)

[P2]: min(λ T − eT )w, s.t. 0≤ w≤ 1 . (4)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

(a) (b) (c) (d)

Region Constraints

(e) (f) (g)

Figure 1: We extract candidate regions to form bags of candidates on the
source (a, b) and target (c, d) RGBD images. Our method optimizes the
region selection and matching using the graph model in (e) and gives the
matching result in (f, g).

For P1, the element of z is 0 if its coefficient is non-negative; other elements
of z with negative weights are determined by the min-cost bipartite match-
ing. P2 can be minimized simply by setting w to the upper or lower bound
based on the sign of the coefficients; if the coefficient λk− ek ≥ 0, wk = 0,
otherwise wk = 1.

The dual problem can be solved using the standard subgradient method
that alternates between the optimization of P1 and P2 and updating the λ .
We initialize λ to a vector of large numbers so that most of the elements in
(cT −λ T B) is negative. After optimizing P1 and P2 to obtain solution to z
and w using the current λ , we let λ ←max{0,λ +δ (w−Bz)}. The iteration
goes on until the relative energy increment of the Lagrangian relaxation is
less than a threshold. The optimum of the Lagrangian relaxation of our
problem equals that of the linear program relaxation.

Based on the Lagrangian dual, we optimize the solution using a branch
and bound method. We need to determine on what variables we generate
the search tree branches. One apparent choice is that we can branch on the
matching variables z. However, there can be huge number of z because it
is a quadratic function of the number of region candidates. We branch on
the region selection variables x and y on image one and two instead. By
fixing x and y to 1 or 0, we enforce that some regions have to be part of the
matching and some have to be excluded. This has a big advantage because
their number is much smaller than that of the matching variables.

The Lagrangian dual can still be computed efficiently for each search
tree node. Each tree node fixes some x and y to 1 or 0, and introduces
extra constraints Dz = d, where matrix D is determined by xi = ∑ j zi, j and
y j = ∑i zi, j, and d is a vector of 1 and 0s. If we treat this as a complicated
constraint, the Lagrangian dual of the search tree node is

max
λ ,ξ
{min

z,w
[(cT −λ

T B+ξ
T D)z+(λ T − eT )w−ξ

T d]} (5)

s.t. Az≤ 1,0≤ w≤ 1, and z is binary.

We can still decompose the problem into P1 and P2. P1 can be reduced to
a min-cost matching problem and P2 can be solved by assigning the upper
or lower bound. We use the subgradient method to determine ξ , which is
similar to how we deal with λ . For ξ , we update it using ξ ← ξ +δξ (Dz−
d), where δξ is a positive step size. Note that the Lagrangian relaxation
still gives the same bound as the linear program relaxation of the original
problem at each search tree node.
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