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Optical flow algorithms attempt to estimate the perceived motion of
each pixel between two frames of an image sequence [9]. Often, a grid-
based graphical model that connects each pixel with its neighbors in the im-
age and associates a motion vector with each image location. These motion
vectors can either be treated as continuous or discrete. While optimization
with continuous values allows for sub-pixel motion estimates [1], it can also
result in convergence to local optima. This can be a particular problem for
large motions, which are often missed in a coarse-to-fine local search.

In contrast, discrete graphical models can sometimes be solved opti-
mally [8]. Even when the problems are NP-hard, approximate methods can
often provide a bound on the globally-optimal energy [7]. These discrete
optimization methods, however, tend to have computational complexities
that are highly dependent on the size of the label space, and they cannot be
readily applied to complex optical flow problems that may involve offsets of
several hundred pixels between frames [2].

In this paper, we propose the use of a tree-based graphical model de-
rived from a hierarchical image segmentation. In any choice of model, there
is an inherent tradeoff between the model’s representational power and its
optimization complexity. We argue that a hierarchical approach is capa-
ble of accurately modeling natural images while also being computationally
tractable. Indeed, we show how the global optimum of this discrete opti-
mization problem can be found by using efficient methods borrowed from
the literature on deformable-parts models [5], even for problems involving
hundreds of thousands of labels. This allows us to optimally solve large
optical flow problems using a discrete, global model for the first time.

Our algorithm proceeds by constructing a tree-structured Markov ran-
dom field (MRF) model based on a hierarchical segmentation of the first
image (Figure 1). An example of a segmentation is shown in Figure 2. The
goal of the motion estimation procedure is to assign an integral offset to
each vertex that maps it onto its correspondent in the second image. This
is done by defining a cost function that is small when pixels have a good
correspondence and when each node has a similar offset to its parent.

We denote the image motions using a function u : V → Z2. The cost
function is defined over the graph structure for this displacement function u:

C(u) = λ0 ∑
v∈V

Pv(u(v))+λ1 ∑
v∈V

Dv(u(v))+ ∑
(vp,vc)∈E

Svp,vc(u(vp),u(vc)) .

Here, Pv(u(v)) is a prior term that encourages each node to have a small
offset. The term Dv(u(v)) is a unary matching term that measures how well
vertex v is matched, and Svp,vc(u(vp),u(vc)) is a smoothness term defined
over the set of edges in the hierarchical tree structure.

The goal of the optimization procedure is to find a solution which mini-
mizes this cost function. Our model can be though of as a large “deformable
parts” model (DPM) [5], which is a widely-used framework in object recog-
nition. The relationship between our model and a DPM allows us to lever-
age optimization techniques first developed in the DPM literature. First,
because our graph is a tree, the minimum-energy solution can be found in
polynomial time using a generalization of the Viterbi algorithm [4]. Also,
because we use an L1 distance function, the cost matrices at each node can
be computed very efficiently using a linear-time distance transform [3]. We
also introduce several small approximations that dramatically speed up the
algorithm while still yielding solutions that are very-nearly optimal.

Additionally, we describe a simple method of incorporating information
from multiple frames in optical flow. We use the idea of inertial estimates
from [6], where several estimates of the optical flow are computed using
nearby frames and subsequently fused using a classifier. We show how the
inertial estimates can instead be directly modeled in our cost function.

Experimentally, we show that state-of-the-art motion estimation schemes
based on local optimization can have difficulties even on relatively simple
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Figure 1: Depiction of our model, shown in 1D for simplicity. We use a hi-
erarchical image segmentation, and each segment has an associated variable
that is connected to its children. The root of the tree represents the entire im-
age and leaves represent pixels. Edge weights are a function of the weights
in the segmentation, denoted here by the thickness of black edges. Variables
in the graphical model are denoted by red circles. After optimization, the
final motion estimate is given by labels assigned to the pixel variables.
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Figure 2: Result of our algorithms on an image from the Final dataset of
MPI-Sintel. The flow images are colored with respect to the maximum
groundtruth displacement.

motion analysis problems that contain large displacements. We illustrate
this issue with both synthetic datasets and real images and show how our
proposed global method can significantly improve performance in these sit-
uations. We also evaluate the proposed method on the challenging MPI-
Sintel dataset [2] and compare its performance to other recent methods. In
Figure 2, the results of our algorithm HCOF with and without the use of
multiple inertial estimates are shown for an image from the MPI-Sintel dat-
set.
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