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Abstract

This paper presents a novel approach to solving opti-
cal flow problems using a discrete, tree-structured MRF de-
rived from a hierarchical segmentation of the image. Our
method can be used to find globally-optimal matching solu-
tions even for problems involving very large motions. Ex-
periments demonstrate that our approach is competitive on
the MPI-Sintel dataset and that it can significantly outper-
form existing methods on problems involving large motions.

1. Introduction
Optical flow algorithms attempt to estimate the perceived

motion of each pixel between two successive frames of an
image sequence [30]. Often, a grid-based graphical model
is employed that connects each pixel with its immediate
neighbors in the image and each variable can be considered
as either continuous or discrete. While continuous-valued
optimization allows for sub-pixel motion estimates [4], it is
also subject to getting stuck in local optima. This is espe-
cially problematic for large motions, which are often missed
in a local search.

In contrast, discrete graphical models can sometimes be
solved optimally [23]. Even when the problems are NP-
hard, approximate methods can often provide a bound on
the globally-optimal energy [18]. These discrete optimiza-
tion methods, however, tend to have computational com-
plexities that are highly dependent on the size of the label
space, and they cannot be easily used for complex optical
flow problems that may involve offsets of several hundred
pixels between frames [6].

In this paper, we propose the use of a tree-based graphi-
cal model derived from a hierarchical image segmentation.
In any choice of model, there is an inherent tradeoff be-
tween the model’s representational power and its optimiza-
tion complexity. We argue that a hierarchical approach is
capable of accurately modeling natural images while also
being computationally tractable. Indeed, we show how the
global optimum of this discrete optimization problem can
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Figure 1: Depiction of our model, shown in 1D for sim-
plicity. We use a hierarchical image segmentation, and each
segment has an associated variable that is connected to its
children. The root of the tree represents the entire image
and leaves represent pixels. Edge weights are a function of
the weights in the segmentation, denoted here by the thick-
ness of black edges. Variables in the graphical model are
denoted by red circles. After optimization, the final motion
estimate is given by labels assigned to the pixel variables.

be found by using efficient methods borrowed from the lit-
erature on deformable-parts models [9], even for problems
involving hundreds of thousands of labels. This allows us
to optimally solve large optical flow problems using a dis-
crete, global model for the first time. We also introduce
several small approximations that dramatically speed up the
algorithm while still yielding solutions that are very-nearly
optimal.

Additionally, we describe a simple method of incorpo-
rating information from multiple frames in optical flow. We
use the idea of inertial estimates from [16], where several
estimates of the optical flow are computed using nearby
frames and subsequently fused using a classifier. We show
how the inertial estimates can instead be directly modeled
in our cost function.

In Section 6, we show that state-of-the-art motion esti-
mation schemes based on local optimization can have diffi-
culties even on relatively simple motion analysis problems
that contain large displacements. We illustrate this issue
with both synthetic datasets and real images and show how
our proposed global method can significantly improve per-
formance in these situations. We also evaluate the proposed
method on the challenging MPI-Sintel dataset [6] and com-
pare its performance to other recent methods.



2. Related Work
Discrete optimization is commonplace in stereo corre-

spondence [19], but has not often been used in optical flow
because of the large label spaces involved. In [15], it was
shown that some image labeling problems can be reduced
in size, after which exact optimization methods can be used,
but this scheme is still only applicable to small label spaces.
In [14], it was shown how multi-label problems can be
solved if the label set has a linear ordering and the regu-
larizer is convex. This was extended to continuous label
spaces in [25], but it is restricted to scalar-valued labels. In
[29] and [13], further relaxations were proposed that allow
for near-optimal solutions to be found for some optical flow
problems. However, their complexity is still strongly tied to
the size of the label space, limiting their applicability.

Other related hierarchical methods for image matching
include [33, 20, 17], although these methods are still ap-
proximate. Hierarchical methods have also been used in
image labeling problems other than correspondence, includ-
ing [11, 27, 34], where tree-based models were used for ex-
act inference. All of these previous methods involve label
spaces that are orders of magnitude smaller than those used
in this paper.

3. Problem setup
Let I1, I2 : (Ω ⊆ R2) → Rd be two d-dimensional

images, where d is typically 3 for color images and 1 for
grayscale images. The image domain is denoted by Ω,
which we consider to be a discrete set of pixel locations.

Our algorithm proceeds by constructing a tree-structured
Markov random field (MRF) model based on a hierarchical
segmentation of the image I1 as depicted in Figure 1. The
goal of the motion estimation procedure is to assign an inte-
gral offset to each vertex that maps it onto its correspondent
in I2. This is done by defining a cost function that is small
when pixels have a good correspondence and when each
node has a similar offset to its parent. The goal of the op-
timization procedure is to find a solution which minimizes
this cost function. The elements of this procedure are de-
scribed in more detail in the following subsections.

3.1. Hierarchical segmentation

We base our hierarchical segmentation of I1 on the
framework of [7], which is in turn based on the ultrametric
contour map (UCM) hierarchy of [2, 3]. Rather than using
a watershed segmentation as the the base of the hierarchy,
we begin with a segmentation using SLIC superpixels [1].
By using SLIC, we are able to explicitly control the size
and complexity of the base superpixel layer. In our experi-
ments, we set the region size and regularization parameters
to 50, which we found resulted in superpixels that are small
enough to contain primarily a single motion but are large

enough for an efficient algorithm.
Examples of segmentations obtained with this procedure

are shown in Figure 4. The segmentation divides the im-
age into a set of small superpixels that are then successively
merged with their most similar neighbors to form a tree
structure. Distances in the hierarchy encode the similarity
of regions and the likelihood that they belong to the same
object [3].

3.2. Graphical model

We construct a MRF model which mirrors the structure
of the tree produced by the hierarchical segmentation (Fig-
ure 1). Let the graph be denoted by G = (V, E), for vertex
set V and edge set E ⊆ V × V . The vertex set V corre-
sponds to the nodes in the segmentation tree; the leaf nodes
correspond to the individual pixels and the interior nodes
correspond to merged regions produced by the hierarchical
segmentation. Each vertex has an associated location, area
and similarity weight.

The location of a vertex in I1 is denoted by the func-
tion x : V → Ω. For vertices corresponding to pixels,
this is defined simply as the location of the pixel. For in-
ternal nodes, we arbitrarily define it as the pixel nearest to
the region’s centroid. The area of each vertex is denoted by
a : V → R+. This area is 1 for the vertices corresponding
to individual pixels, and for internal nodes the area is the
sum of the areas of its children. The similarity weight of
each interior vertex v is denoted by s : V → R+, and is de-
fined as the similarity of v’s two children. Specifically, our
chosen segmentation algorithm [7] specifies an ultrametric
distance d(v), which is the level at which the regions cor-
responding to v’s children are merged in the segmentation
process. The similarity weight is then set using a logistic
function:

s(v) = 1/
(

1 + eη1(d(v)+η0)
)
. (1)

Edges in the graph are placed between all nodes sharing
a parent-child relationship in the image segmentation hier-
archy:

E = {(vp ∈ V, vc ∈ V) | vp is the parent of vc}. (2)

Each edge (vp, vc) ∈ E is assigned a weight that determines
how similar the offsets of a node vp and its child vc should
be, which will be used in the smoothness term of our cost
function. This weight is denoted by w : V × V → R, and
is defined as

w(vp, vc) = a(vc)
[
s(vp) + (1− s(vp)) e

−τa(vc)
]
. (3)

This weight does the following: (1) it weights the edge by
the area of the child node so that the smoothness term op-
erates on all regions equally, (2) it weights the edge using



the region similarity s(vp) and (3) it up-weights the edge
for small regions to encourage them to be better connected
to their parents, modulated by the parameter τ .

3.3. Cost function

We denote the image motions using a function u :
V → Z2, and we say that vertex v is matched to location
x(v) + u(v) in I2. The cost function is defined over the
graph structure for this displacement function u:

C(u) =λ0
∑
v∈V
Pv(u(v)) + λ1

∑
v∈V
Dv(u(v))

+
∑

(vp,vc)∈E

Svp,vc(u(vp),u(vc)) . (4)

Here, Pv(u(v)) is a prior term that encourages each node to
have a small offset. The term Dv(u(v)) is a unary match-
ing term that measures how well vertex v is matched, and
Svp,vc(u(vp),u(vc)) is a smoothness term defined over the
set of edges. The parameters λ0 and λ1 control the tradeoff
of these terms.

We set Pv(u(v)) = Dv(u(v)) = 0 for all nodes that
do not correspond to pixels at the base of the hierarchy. In
other words, our unary terms affect only the leaves. The
hierarchy thus is used only for enforcing smoothness. It is
possible to add unary costs to internal nodes to incorporate
region information, but we do not consider this here.

3.3.1 Spatial prior term

The spatial prior term encourages pixels to have small dis-
placements. For this term, we fit a Cauchy distribution
to the set of groundtruth offsets in the MPI-Sintel train-
ing dataset. The spatial prior term is then the negative
log-likelihood of the associated Cauchy distribution with
γprior = 3.3942:

Pv(u(v)) = log
[
π
(
u(v)2 + γ2prior

)
/γprior

]
. (5)

3.3.2 Matching term

We use a data matching term that is composed of both a
color and a gradient component. Let I1 and I2 be two im-
ages in the Lab color space. For color features, we construct
a 5× 5 array of cells, centered at a given pixel. The size of
the cells can be varied in order to accumulate a larger or
smaller contextual area. All pixel values within each cell
are averaged, and this is applied to all three channels of the
Lab color images, resulting in a 75-dimensional feature vec-
tor. Distances between feature vectors are computed using
an L1 distance function. Let [·]C be a function that maps an
image to its 75-dimensional color feature vector. The cost
function is then given by:

DLABv (u(v)) = ‖[I1]C(x(v))− [I2]C(x(v) + u(v))‖1 .
(6)

The gradient component of our data cost function uses
SIFT features [21] computed densely at every pixel. Let
[·]S be a function that maps an image to its 128-dimensional
SIFT features computed densely at each pixel location in Ω.
We use an L1 cost function:

DSIFTv (u(v)) = ‖[I1]S(x(v))− [I2]S(x(v) + u(v)))‖1 .
(7)

The final cost function is a weighted linear combination
of the color and SIFT costs:

Dv(u(v)) = αDLABv (u(v))+(1−α)DSIFTv (u(v)) . (8)

Note that the only desideratum of the distance function is
that it be computationally efficient; it need not be a metric,
differentiable, convex, or even continuous. This allows us to
use SIFT features in dense optical flow without computing
matches beforehand, and opens the door to more complex
descriptors and distances.

3.3.3 Smoothness term

The smoothness term encourages vertices to have a similar
offset to their parent. We use a weighted L1 penalty,

Svp,vc(u(vp),u(vc)) = w(vp, vc)‖u(vp)− u(vc)‖1 , (9)

for vp the parent of vc, where w(vp, vc) is the associated
edge weight as defined in Equation (3).

Note that this tree-based smoothness term is a significant
departure from more traditional smoothing functions which
are usually formulated on a graph that connects each image
region to all of its neighbors. It has been previously ob-
served that people’s perceptual organization of objects in an
image is hierarchical in nature [22]; we likewise argue that
this tree-based smoothing term captures most of the salient
features of the true motion field, while yielding a tractable
optimization problem.

4. Optimization
Our model can be though of as a large “deformable

parts” model (DPM) [9], which is a widely-used framework
in object recognition. In a DPM, an object is represented by
a tree that models how the parts of the object are connected
to each other. Each node has a unary cost function that re-
flects its preference for various matches, and each edge in
the tree is associated with a smoothness function that con-
strains the relative motion of the two parts. Although our
model is more complex – our tree describes an entire im-
age rather than a single object – the optimization problem
is similar: in both cases the model is a tree-structured MRF
and the label space captures the set of possible displace-
ments.

The relationship between our model and a DPM allows
us to leverage optimization techniques first developed in



the DPM literature. First, because our graph is a tree, the
minimum-energy solution can be found in polynomial time
using a generalization of the Viterbi algorithm [10]. Also,
because we use an L1 distance function, the cost matrices at
each node can be computed very efficiently using a linear-
time distance transform [8].

To briefly summarize this procedure, the cost for each
node is computed as a function of its children. This pro-
cess begins at the leaf (pixel) nodes, and the cost matrices
of each internal node are computed by applying distance
transforms to the cost matrices of its children and summing
them. We also compute and store a Voronoi array that spec-
ifies the optimal label for each vertex given a label for its
parent. When the root of the tree is reached, the optimal
cost for the entire model is found, and the labels of each
vertex are set by backtracing back down the tree using the
stored Voronoi arrays. For brevity, we omit further details
of this procedure, which can be found in [9, 10].

4.1. Implementation details

Even though our tree-based MRF model can be opti-
mally solved in polynomial time, a naive implementation
would still be computationally demanding because of the
number of nodes and the size of the label space. We thus
make the following optimizations and approximations so
that it can be computed on a standard computer in a reason-
able amount of time with high accuracy. Note that although
the result of these approximations is that the solutions are
no longer exact, in practice we have found that the flow es-
timates produced are nearly indistinguishable from the true
minima of the model.

Subsampling of superpixels We assume that the su-
perpixels at the base of the segmentation hierarchy are suf-
ficiently small that the optimal offsets of their constituent
pixels will be very similar. This implies that their cost ma-
trices will also be very similar, and so rather than comput-
ing a separate cost matrix for every pixel within a super-
pixel, we only compute the cost matrix for a small set of
randomly-sampled constituent pixels. In practice, we use
only 10 pixels per superpixel. Since each superpixel may
contain hundreds or thousands of pixels, this significantly
reduces the computational complexlity.

However, this creates a problem when backtracing down
the tree to label each pixel. Because a cost matrix is not cre-
ated for all pixels at the base of the hierarchy, they cannot
all be directly labeled. We could circumvent this problem
by computing the full cost matrix for each pixel only when
it needs to be labeled at the end of the backtracing step,
but this is still time consuming. Instead, we assume that
a pixel’s offset will be close to its parent’s offset and only
compute the cost in a small window around the parent’s off-
set. In practice, we use a window that has a radius that is
either 2 pixels or 20% of the magnitude of the parent’s off-

set, whichever is larger. Because a large majority of pixels
in many datasets have small motions, this is significantly
more efficient than computing the full cost matrix for each
pixel.

Subsampled cost matrices When performing the up-
ward pass of optimization, we do not compute a full cost
matrix for each node. Instead, we only compute every kth

pixel in a grid for some value of k. Because neighboring
pixels will have similar costs, this results in a minimal de-
crease in accuracy while significantly speeding up the op-
timization. This strategy effectively reduces the number of
labels on the upwards pass by only allowing each node to
take every kth label. However, at the final level of the down-
ward pass, we compute a dense cost matrix for each pixel
in the vicinity of its parent’s optimal displacement and use
this to determine its label. Thus, the size of the label space
for the pixels is not reduced.

Sub-pixel localization Although our method is dis-
crete, sub-pixel estimates can improve results. We do
so in a similar way to [12]. At the pixel level of the
downward pass of the optimization, a cost matrix for each
pixel is computed as mentioned previously. Let (x, y)
be the location of the minimum value in the pixel-level
cost matrix. We fit a parabola to the cost values at lo-
cations (x − 1, y), (x, y), (x + 1, y) and analytically lo-
cate the minimum. The y-direction is treated similarly
by finding the minimum of a parabola fit to the values at
(x, y − 1), (x, y), (x, y + 1). Note that because (x, y) is a
local minimum, the two quadratics will have well-defined
minima near the location (x, y). The sub-pixel motion esti-
mates are computed analytically with a negligible increase
in runtime.

Compressing the cost matrices The values within the
cost matrices need to be known only approximately. Rather
than store the full matrix as double-precision floating point
values, we store the minimum and maximum values in each
matrix, scale the cost matrices to be between 0 and 28 − 1,
and store them as unsigned 8-bit integers.

Compressing the Voronoi matrices The Vornoi dia-
grams – which encode where every node should be placed
as a function of its parent’s offset – need to be computed
and stored for each of the nodes in the graph and this can
consume a significant amount of memory. In practice, we
have observed that these diagrams often conform to one of
two patterns (Figure 2). If the smoothness cost is small,
the Voronoi diagram will be dominated by only a few en-
tries corresponding to a few dominant local minima of the
cost matrix and all other cost matrix values can be dis-
carded without altering the resulting Voronoi diagram. In
this case, we store only these entries of the cost matrix
and the Voronoi diagram can then be recomputed when it
is needed.

Alternatively, if the smoothness constraint is relatively



(a) Cost matrix (b) Distance
transform

(c) Voronoi dia-
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Figure 2: The Voronoi diagram encodes the optimal label
of a node given its parent’s location. It can be compressed
two ways. The last column shows the entries that need to
be stored of the cost matrix (first row) or Voronoi diagram
(second row). Top row: When the smoothness cost is small,
the Voronoi diagram is dominated by a few entries. Only a
few locations of the cost matrix are needed to reproduce the
Voronoi diagram. Bottom row: When the smoothness cost
is large, most indices of the Voronoi diagram are just the
index of the location itself, and we only store the indices
which differ.

high then the best motion of a node will usually be similair
to that of its parent. In this case we store a sparse matrix
encoding the entries where the child’s displacement differs
from that of its parent. The full, non-sparse Voronoi dia-
gram can then be constructed when it is needed.

At runtime the system determines which compression
scheme is most effective for each node and applies it.

5. Multi-frame optical flow
For two-frame optical flow, large displacements can

make it difficult or even impossible to find correct corre-
spondences, such as when an object moves out of frame. In
[16] a simple method was proposed to incorporate informa-
tion from multiple frames. This is done by assuming that
objects move linearly, from inertia, over a short time span.
Multiple “inertial” estimates of the flow are formed from
nearby frames and subsequently fused using a classifier.

In our global optimization framework, inertial estimates
can be directly incorporated into the data cost term with-
out changing the optimization procedure at all (Figure 3).
Let Dt+1

v (u(v)) be the data term for pixel node v with re-
spect to frame t + 1, which is just the standard two-frame
data cost function. Similarly, let Dt−1v (−u(v)) be the cost
as projected onto frame t − 1 and let Dt+2

v (2u(v)) be the
cost with respect to frame t + 2. If a vertex is occluded, it
may have a high cost with respect to frame t+ 1, but might
match better to one of the other frames. In other words, we
want vertex v to match to one of the three frames, but not
necessarily all. We then define

Dv(u(v)) = min


Dt+1
v (u(v)),

Dt−1v (−u(v)) + β,

Dt+2
v (2u(v)) + β ,

(10)

x(v)-u(v)

x(v)
x(v)+u(v)

x(v)+2u(v)

t+ 2t+ 1tt− 1

Figure 3: Depiction of our multi-frame term. Rather than
only computing the data cost from frame t to t+1, the offset
is extended to other adjacent frames, and the data terms are
combined into a single cost matrix. The intuition is that if
a node is occluded, it may match better to another adjacent
frame, assuming linear motion.

where β > 0 biases the cost towards matching to frame
t + 1. This data cost is then used directly within the opti-
mization. Note that it would be difficult to use this method
within a continuous optimization framework because the
cost function is no longer differentiable everywhere and has
many more local minima.

6. Experiments
Our algorithm is denoted by HCOF, while the

HCOF+multi variant uses multiple frames as described in
Section 5.

Parameters Parameters for all experiments in this pa-
per were set using the Final training dataset of MPI-Sintel
[6]. Parameters were optimized using a small grid search.
We set α = 0.15, λ0 = 1, λ1 = 2, η0 = 50, η1 = −0.05,
τ = 0.01, and β = 40 when multiple frames were used.
The maximum offset was set to 200 pixels, which accounts
for 99.9% of all pixels on the MPI-Sintel training dataset.
Note that this results in a label space with 160,000 labels.
On the upward pass, the data cost matrices were sampled
every 3 pixels. The SIFT features had a cell size of 5 pixels
and the Lab color features had a cell size of 3 pixels. For
SLIC superpixels, the region size parameter was set to 50
and the regularization parameter was also set to 50.

6.1. MPI-Sintel

The MPI-Sintel dataset [6] is a difficult optical flow
dataset created using an open-source 3D computer-
generated film. The dataset consists of over 1000 images
and contains difficulties such as large displacements, sig-
nificant occlusions, lighting variation, and motion blur.

Results for several images chosen from the Final training
set of MPI-Sintel are show in Figure 4. The global nature
of the optimization coupled with the underlying superpixel
segmentation results in flow estimates with crisp motion
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(a) First image (b) Second image (c) Segmentation
EPE: 8.50

(d) HCOF
EPE: 7.68

(e) HCOF+multi (f) Groundtruth

Figure 4: Results on several images from the Final dataset of MPI-Sintel. The flow images are colored with respect to the
maximum groundtruth displacement.

Table 1: Evaluation on the Final training dataset of MPI-
Sintel. The use of inertial estimates improves results.

EPE s0-10 s10-40 s40+

HCOF 5.882 3.163 6.786 17.596
HCOF+multi 5.265 2.800 5.928 15.892

boundaries as opposed to the oversmoothed motions pro-
duced by many schemes based on continuous optimization.

We have found that the use of multiple inertial estimates
of optical flow in the data cost can significantly improve
results, especially in occluded regions. This is illustrated
quantitatively in Table 1 which summarizes the results ob-
tained with both HCOF and HCOF+multi on the Final train-
ing dataset.

Quantitative results on the test set for the method
HCOF+multi are shown in Table 2. Our method is com-
petitive with many modern methods, although the errors are
still below the state-of-the-art. A significant fraction of the
error can be attributed to segmentation errors. When we
evaluated the method on the training set using a segmen-
tation derived from the ground truth motion, the endpoint
error was reduced by 15%. This suggests that future work
could consider strategies that refine the segmentation tree as
the optimization proceeds.

Our results were computed on a computer with a 2 GHz
Intel Xeon processor and 4 GB of memory. The compu-
tation took about 10 minutes when multiframe estimates
were not used and about 25 when they were, for the full-
size 1024×436 images. The computation time could be
substantially reduced by using simpler features and smaller
images. We also note that several parts of our algorithm,
such as computing the data cost for each pixel, can readily
be parallelized.

Table 2: Evaluation on the Final test dataset of MPI-Sintel.
We report endpoint error for all pixels, and also based on
the groundtruth speed.

EPE s0-10 s10-40 s40+

EpicFlow [26] 6.285 1.135 3.727 38.021
TF+OFM [16] 6.727 1.512 3.765 39.761
DeepFlow [31] 7.212 1.284 4.107 44.118
AggregFlow[12] 7.329 1.241 4.296 44.858
ChannelFlow[28] 8.835 1.292 5.349 54.648
LDOF [5] 9.116 1.485 4.839 57.296
AnisoHuber.L1 [32] 11.927 1.155 7.966 74.796

HCOF+multi 8.799 1.682 5.786 51.363

6.2. Synthetic Dataset

In order to illustrate the issues that often occur in the
face of large motions, we constructed a simple synthetic
dataset using the imagery from the Final dataset of MPI-
Sintel. An example of an image pair from this dataset is
shown in Figure 5. For each such pair a background is gen-
erated by choosing an image uniformly at random and se-
lecting a random 256×256 square patch from that image.
We then generate an “object” by selecting a random 32×32
patch from another image. The object patch is placed at a
random location on the background and is then translated
in a random direction by a specified offset distance. For a
given offset distance, we evaluate each algorithm averaged
over 100 such random images.

We deliberately chose a relatively simple motion stimu-
lus to illuminate how various schemes handle layered mo-
tions with large displacements. Adding more layers, more
motions and more objects would not fundamentally alter the
results.



(a) First image (b) Second image (c) Groundtruth

Figure 5: An example of an image from our synthetic
dataset. A random 256×256 patch is used as a background
while another 32×32 “object” patch is moved a given offset
between images. In this example, the offset is 50 pixels.

We compare our own algorithm, HCOF, to several other
modern approaches for which code was readily available:
Classic+NL [30], LDOF [5], and DeepFlow [31]. Clas-
sic+NL is a modern implementation of a coarse-to-fine
variational approach. Large Displacement Optical Flow
(LDOF) incorporates sparse feature matching into the op-
timization in order to better deal with large displacements.
Finally, DeepFlow is a top-performing algorithm on MPI-
Sintel that uses a more advanced feature matching term to
account for deformation. For all approaches, we used their
default parameters, except for DeepFlow where we used the
“improved settings” as documented in their code. We also
compare to the baseline method of predicting a zero-valued
flow.

Results on this dataset are given in Figure 6. We show
the mean endpoint error for each method as averaged over
100 random images, and the offset is varied from a mini-
mum of 10 pixels to a maximum of 100 pixels. The error is
evaluated for both the full image as well as only the object
patch itself.

In all cases, the error increases roughly linearly as the
offset is increased. For offsets of less than 20 pixels,
HCOF is outperformed by the other coarse-to-fine contin-
uous methods which are able to achieve better sub-pixel ac-
curacy and are not affected by segmentation error. However,
HCOF is significantly more robust to large displacements.
For offsets of 100 pixels, our method achieves errors sev-
eral times lower than other approaches. The reason for this
is that the magnitude of the offset has little effect on the
accuracy of our method because it uses a discrete, global
optimization. Additionally, segmentation error is minimal
on this dataset.

6.3. Tracking Dataset

To demonstrate that the issues illustrated in Section 6.2
do in fact occur in real images we evaluated our algorithm
on the Hotel sequence from the BIWI Walking Pedestrians
dataset [24], which is a video of a city sidewalk taken from
an overhead camera. The video was taken at 25 frames per
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Figure 6: Endpoint error on a synthetic dataset where an
object is translated a varying amount. The Baseline method
is a zero-flow estimate. The endpoint error is averaged over
100 images and we show the standard error as error bars. In
(a), endpoint error is averaged over the entire image, while
in (b) we plot the error for only the object itself.

second and annotations are provided for every 10th frame
indicating the positions of people visible in the scene. We
further subsample every other annotated frame so that the
dataset contains both large and small motions, resulting in
a total of 572 annotated frames each with a resolution of
720×576 pixels. Two frames from this dataset are shown in
Figure 7.

We evaluate flow methods on this dataset in two ways.
First, we have sparse annotations of the locations of people.
For these points we calculate the groundtruth offsets and
compare them to the results from each method. However,
this may penalize methods that successfully track most of
a person but miss the one annotated pixel, and so instead
we find the best estimated flow value within a 41×41 box
around each annotated point, as shown in Figure 7. This
evaluation is done independently on all 2623 pedestrian an-
notations in the dataset.

We also evaluate methods by noting that the camera is
stationary and that much of the image will have zero optical
flow. We determine the stationary pixels in each frame by
thresholding the magnitude of the intensity difference be-
tween frames at 0.05. We evaluate the flow on these back-
ground pixels separately.

Qualitative results on a pair of frames from this dataset
are shown in Figure 7, and quantitative results are given in
Table 3. For the annotated tracks, the results are presented
using average EPE and are also divided into bins based on
the magnitude of the groundtruth motion, similar to the re-
sults for MPI-Sintel (Section 6.1). The last column of the
table also shows the mean EPE over all the background pix-
els.

LDOF performs the best of all continuous methods, but
for large offsets HCOF+multi has a significantly lower er-
ror than other methods. DeepFlow may underperform on
this dataset as compared to MPI-Sintel because the objects
that are moving are relatively small and DeepFlow does



(a) First image (b) Second image (c) Estimated background (d) HCOF

(e) HCOF+multi (f) LDOF (g) DeepFlow (h) Classic+NL

Figure 7: An example of a result from the Tracking dataset. In (a), the black boxes indicate the people for which annotations
are provided and the extent of the boxes is the area over which we look for the lowest endpoint error for each person. In (c),
we show the estimated background pixels, for which we assume the flow is zero in our evaluation. The results of different
methods are given in (d)-(h). The results of our method HCOF are much more localized.

not compute a fully-dense feature matching due to mem-
ory constraints. Overall, HCOF+multi outperforms all other
methods on this dataset. We also find that HCOF and
HCOF+multi are significantly more accurate on the back-
ground pixels that have zero flow than all methods except
for Classic+NL, which has a low error only because it fails
to correctly estimate the motions of the people. All other
methods tend to pull part of the background along with the
objects and are less able to localize the objects themselves.
This can be seen visually in the results in Figure 7. Note,
for example, that all methods other than HCOF are unable
to separate the two people walking next to each other at the
bottom of the image.

7. Summary

In this paper we have described a novel approach for es-
timating optical flow that leverages a hierarchical segmen-
tation of the image. To the best of our knowledge this is the
first time that a discrete, global optimization approach has
been successfully applied to large scale optical flow prob-
lems involving hundreds of thousands of motion labels.

The computational innovations that we have described
make it possible to solve for per-pixel flows using a reason-
able amount of computation and memory. The experimental
results suggest that the proposed tree-based smoothing cost
captures most of the salient features of the actual flow field
and that a global optimization approach can improve per-

Table 3: Evaluation on the tracking dataset. The left sec-
tion of the table shows the endpoint error over all annotated
tracks, both overall and divided based on the magnitude of
the groundtruth motion vectors. The last column measures
the endpoint error over estimated background pixels.

Annotated Tracks Background

EPE s0-10 s10-40 s40+ EPE

LDOF [5] 3.031 0.654 1.954 4.333 0.738
DeepFlow [31] 13.048 0.862 4.751 20.265 0.730
Classic+NL [30] 35.220 0.821 16.705 54.631 0.385

HCOF 2.896 0.603 2.321 4.060 0.580
HCOF+multi 2.561 0.678 2.948 3.349 0.430

formance in situations that involve large motions.
Future work will look at refining the scoring function

associated with the superpixels to allow for more complex
deformation models. We also plan to explore ideas for refin-
ing the segmentation tree over the course of the procedure
to improve the final motion estimates.
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