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Recent work on representation learning using deep neural networks has
shown that features of thousands of dimensions or even more are useful
for various recognition tasks. On the other hand, it has been noticed that
for input signals of dimensionality d, the code-length b of the binary code
required to achieve reasonable accuracy (compared with no encoding) is
usually O(d). Based on these facts, we consider the problem of learning
long binary codes for high-dimensional arbitrary input signals.

We observe two key challenges arise while learning and using long bi-
nary codes: (1) lack of an effective regularizer for learned high-dimensional
mapping and (2) high computational cost for computing long codes. In this
paper, we overcome both these problems by introducing a sparsity encour-
aging regularizer that reduces the effective number of parameters involved
in the learned projection operator. This regularizer can not only reduces
overfitting but, due to the sparse nature of the projection matrix, also leads
to a dramatic reduction in the computational cost.

To be specific, we use X ∈Rd×n to denote a matrix whose each column
is a d-dimensional datum. Our target is to learn a projection matrix R ∈
Rb×d for producing b-bit binary codes by B = sign(RX) ∈ {−1,1}b×n. A
widely considered objective function involves minimizing the distortion, as
adopted in ITQ [2] and its variants [3, 6]. In ITQ, the objective function is
only regularized by an orthogonality constraint, which is a weak regularizer.
To further regularize the projection of high-dimensional data, we introduce
a sparsity constraint. Our objective function is:

min
R,B
‖RX−B‖2

F (1)

s.t. RTR = I, and |R|0 ≤ m.

Here ‖·‖F denotes Frobenius norm, and | · |0 denotes the number of non-zero
elements in matrix. Parameter m directly controls the sparsity of R.

However, it is challenging to optimize a matrix with both a orthogo-
nality constraint and a sparsity constraint. To find a feasible solution, we
adopt the variable-splitting and penalty techniques in optimization [1]. We
introduce an auxiliary variable R̄ and relax the problem as:

min
R,R̄,B

‖R̄X−B‖2
F +β‖R̄X−RX‖2

F (2)

s.t. R̄TR̄ = I, and |R|0 ≤ m,

where β is a penalty weight and we fix it to 1 in experiments. We solve (2)
in an alternating manner: updating one variable with others fixed.

Step 1. Fix B and R̄, update R. This sub-problem is:

min
R
‖RX−Z‖2

F (3)

s.t. |R|0 ≤ m,

where Z= R̄X is fixed. This sub-problem looks like a sparse coding problem
under the m-sparsity constraint. But in commonly studied sparse coding
problems, the variable R is a vector and RX is a vector-matrix multiplication.
Here we develop a solution to the matrix variable R.

Instead of directly optimizing (3), we solve the following problem:

min
R,S

φ(R,S) = min
R,S
‖RX−Z‖2

F +‖X‖2
F‖R−S‖2

F−‖RX−SX‖2
F, (4)

where φ is a surrogate objective function [5] and S is a matrix of the same
size as R. The solution to (4) can be proven to give the solution to (3). We
optimize (4) by an alternating algorithm as in [5]: fixing S and solving for
R, and vice versa. In this way, the iterative solution to (3) is given as

Rt+1 = thrm

(
Rt +

1
‖X‖2

F
(R̄−Rt)XXT

)
, (5)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: ANN search accuracy vs. encoding time on a dataset of one mil-
lion 4096-d DNN features. Our sparse projection (SP) method, with 5%,
10%, and 15% non-zero elements, is more accurate and about 10× faster
than ITQ [2] and LSH, and is more accurate than BP [3] and CBE [6].

where thrm is an operator that only keeps the largest m entries. A natural
initialization to (5) is to let R0 = R̄. Then the first iteration of (5) gives:

R = thrm
(
R̄
)
. (6)

In experiments, we find that the one-step solution gives comparable accu-
racy, but is much faster for training.

Step 2. Fix B and R, update R̄. This sub-problem is an orthogonal pro-
crustes problem. The solution is R̄ = VUT, where U and V are from the
SVD of XYT. It is worth noting that according to modern studies [4], the
above solution is valid for all b ≥ d. Thus our method and ITQ are both
naturally applicable for generating higher-dimensional binary codes.

Step 3. Fix R and R̄, update B. This sub-problem is: minB ‖R̄X−B‖2
F =

maxB ∑i, j(R̄X)i jBi j. Since Bi j ∈ {−1,1}, the solution is B = sign(R̄X).

We iteratively run in Step 1-3 (start from Step3) for 50 iterations, and
finally a sparse matrix R is produced for projecting data.

We run comprehensive experiments of ANN search, image retrieval and
image classification. Results show that our method not only leads to bet-
ter accuracy than competitive dense projection methods (ITQ [2] and LSH)
with the same code lengths, but is also over one order of magnitude faster.
Furthermore, our method is more accurate than two recent methods (BP [3]
and CBE [6]) that are designed for fast high-dimensional binary encoding.
As an example, Figure 1 shows a comparison on one million 4096-d DNN
features.
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