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Computing a similarity transformation between two coordinate systems is a
fundamental problem in multi-view geometry. In computer vision, similar-
ity transformations can be useful for aligning 3D reconstructions or perform-
ing loop closure when scale drift occurs. The standard method to compute
a similarity transformation is by aligning 3D points [4]; however, in the
context of multi-view geometry this alignment may be sub-optimal since
the error in alignment depends on the distance between 3D points. New
methods have been proposed to compute a similarity transformation from
2D-3D correspondences such that reprojection error is minimized [3, 5].
These methods are much more accurate and are ideal for applications such as
structure-from-motion where a minimal reprojection error is sought. These
methods, though, are still overly reliant on the quality of 3D points which
is known to deteriorate as the depth of the 3D point increases with respect
to the cameras that observe it. Ideally, we would prefer a method that is
not dependent on potentially noisy 3D points that is still able to minimize
reprojection error.

In this paper, we propose a novel solution for computing the similar-
ity transformation between two coordinate systems from only 2D-2D image
correspondences. By representing each coordinate system as a generalized
camera [1] solving for the similarity transformation is equivalent to solving
for the relative pose and scale between the two generalized cameras. We
call this new problem the generalized relative pose and scale problem. Rec-
onciling the relative pose between two generalized cameras as well as the
unknown scale is equivalent to recovering a 7 degrees-of-freedom (d.o.f.)
similarity transformation. This allows for a much broader use of gener-
alized cameras. In particular, similarity transformations can be used for
loop closure in SLAM (where scale drift occurs) and for merging multiple
Structure-from-Motion (SfM) reconstructions when the scale between the
reconstructions is unknown. This problem arises frequently because scale
cannot be explicitly recovered from images alone without metric calibration,
so developing accurate, efficient, and robust methods to solve this problem
is of great importance.

To solve the generalized relative pose and scale problem we utilize the
generalized epipolar constraint [1] while additionally incorporating scale:

( fi×R f ′i )
>t + f>i ([oi]×R−Rs[o′i]×) f ′i = 0, (1)

where fi, f ′i are unit-norm pixel rays and oi, o′i are origins of the cameras
within the generalized camera and R, t, and s are the rotation, translation,
and scale of the similarity transformation. By stacking this constraint for all
correspondences, we arrive at a simple linear expression for the similarity
transformation:

M(R) · t̃ = 0,where t̃ =

t
s
1

 . (2)

The full details of how to compose matrix M from Eq. (1) are given in the
paper. The generalized relative pose and scale problem has 7 d.o.f. and
thus requires 7 correspondences in the minimal case. Let us consider the
quaternion rotation parameterization q = (x, y, z, α)> such that the rotation
matrix

R = 2(vv>+α[v]×)+(α2−1)I, (3)

where v = (x, y, z)> and [v]x is the skew-symmetric cross product matrix
of v. Thus, M is quadratic in the quaternion parameters and the general-
ized epipolar constraint of Eq. (2) is a 4-parameter Quadratic Eigenvalue
Problem (QEP). No methods currently exist to directly solve a 4-parameter
QEP

To make Eq. (2) solvable, we consider a simplified problem by assum-
ing that the vertical direction has been aligned between the two generalized
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Figure 1: We present a method to solve the generalized relative pose and
scale problem. We first align the generalized cameras to a common vertical
direction then use image rays obtained from 5 2D-2D correspondences to
solve for the remaining degrees of freedom. Solving this problem is equiv-
alent to computing a similarity transformation

cameras. In the quaternion parameterization, this means that v = (0, 1, 0)>

and we are left with solving for the unknown parameter α which is related
to the rotation angle about the axis v [2]. When considered in the context of
the generalized relative pose and scale problem, the intractable 4-parameter
QEP from Eq. 2 has now been reduced to a single unknown parameter α in
matrix M:

(α2A+αB+C) · t̃ = 0, (4)

where A, B, and C are 5×5 matrices formed from matrix M in Eq. (2). The
quadratic eigenvalue problem is simple to solve. The full solution details,
including how to robustly align the vertical direction, are provided in the
full paper.

In contrast to alternative similarity transformation methods, our approach
uses 2D-2D image correspondences thus is not subject to the depth un-
certainty that often arises with 3D points. To our knowledge, this is the
first method for computing similarity transformations that does not require
any 3D information. Our experiments on synthetic and real data demon-
strate that this leads to improved performance compared to methods that
use 3D-3D or 2D-3D correspondences, especially as the depth of the scene
increases.
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