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Abstract

Similarity-preserving hashing is a widely-used method
for nearest neighbour search in large-scale image retrieval
tasks. For most existing hashing methods, an image is
first encoded as a vector of hand-engineering visual fea-
tures, followed by another separate projection or quantiza-
tion step that generates binary codes. However, such visual
feature vectors may not be optimally compatible with the
coding process, thus producing sub-optimal hashing codes.
In this paper, we propose a deep architecture for supervised
hashing, in which images are mapped into binary codes via
carefully designed deep neural networks. The pipeline of
the proposed deep architecture consists of three building
blocks: 1) a sub-network with a stack of convolution lay-
ers to produce the effective intermediate image features; 2)
a divide-and-encode module to divide the intermediate im-
age features into multiple branches, each encoded into one
hash bit; and 3) a triplet ranking loss designed to character-
ize that one image is more similar to the second image than
to the third one. Extensive evaluations on several bench-
mark image datasets show that the proposed simultaneous
feature learning and hash coding pipeline brings substan-
tial improvements over other state-of-the-art supervised or
unsupervised hashing methods.

1. Introduction

With the ever-growing large-scale image data on the
Web, much attention has been devoted to nearest neigh-
bor search via hashing methods. In this paper, we focus on
learning-based hashing, an emerging stream of hash meth-
ods that learn similarity-preserving hash functions to en-
code input data points (e.g., images) into binary codes.

Many learning-based hashing methods have been pro-
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posed, e.g., [8, 9, 4, 12, 16, 27, 14, 25, 3]. The existing
learning-based hashing methods can be categorized into un-
supervised and supervised methods, based on whether su-
pervised information (e.g., similarities or dissimilarities on
data points) is involved. Compact bitwise representations
are advantageous for improving the efficiency in both stor-
age and search speed, particularly in big data applications.
Compared to unsupervised methods, supervised methods
usually embed the input data points into compact hash codes
with fewer bits, with the help of supervised information.

In the pipelines of most existing hashing methods for im-
ages, each input image is firstly represented by a vector of
traditional hand-crafted visual descriptors (e.g., GIST [18],
HOG [1]), followed by separate projection and quantiza-
tion steps to encode this vector into a binary code. How-
ever, such fixed hand-crafted visual features may not be op-
timally compatible with the coding process. In other words,
a pair of semantically similar/dissimilar images may not
have feature vectors with relatively small/large Euclidean
distance. Ideally, it is expected that an image feature rep-
resentation can sufficiently preserve the image similarities,
which can be learned during the hash learning process. Very
recently, Xia et al. [27] proposed CNNH, a supervised hash-
ing method in which the learning process is decomposed
into a stage of learning approximate hash codes from the su-
pervised information, followed by a stage of simultaneously
learning hash functions and image representations based
on the learned approximate hash codes. However, in this
two-stage method, the learned approximate hash codes are
used to guide the learning of the image representation, but
the learned image representation cannot give feedback for
learning better approximate hash codes. This one-way in-
teraction thus still has limitations.

In this paper, we propose a “one-stage” supervised hash-
ing method via a deep architecture that maps input images
to binary codes. As shown in Figure 1, the proposed deep
architecture has three building blocks: 1) shared stacked
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Figure 1. Overview of the proposed deep architecture for hashing. The input to the proposed architecture is in the form of triplets, i.e.,
(I, I+, I−) with a query image I being more similar to an image I+ than to another image I−. Through the proposed architecture, the
image triplets are first encoded into a triplet of image feature vectors by a shared stack of multiple convolution layers. Then, each image
feature vector in the triplet is converted to a hash code by a divide-and-encode module. After that, these hash codes are used in a triplet
ranking loss that aims to preserve relative similarities on images.

convolution layers to capture a useful image representation,
2) divide-and-encode modules to divide intermediate im-
age features into multiple branches, with each branch cor-
responding to one hash bit, (3) a triplet ranking loss [17]
designed to preserve relative similarities. Extensive evalua-
tions on several benchmarks show that the proposed deep-
networks-based hashing method has substantially superior
search accuracies over the state-of-the-art supervised or un-
supervised hashing methods.

2. Related Work
Learning-based hashing methods can be divided into two

categories: unsupervised methods and supervised methods.
Unsupervised methods only use the training data to learn

hash functions that can encode input data points to bi-
nary codes. Notable examples in this category include
Kernelized Locality-Sensitive Hashing [9], Semantic Hash-
ing [19], graph-based hashing methods [26, 13], and Itera-
tive Quantization [4].

Supervised methods try to leverage supervised informa-
tion (e.g., class labels, pairwise similarities, or relative sim-
ilarities of data points) to learn compact bitwise representa-
tions. Here are some representative examples in this cate-
gory. Binary Reconstruction Embedding (BRE) [8] learns
hash functions by minimizing the reconstruction errors be-
tween the distances of data points and those of the corre-
sponding hash codes. Minimal Loss Hashing (MLH) [16]
and its extension [17] learn hash codes by minimizing
hinge-like loss functions based on similarities or relative
similarities of data points. Supervised Hashing with Kernels
(KSH) [12] is a kernel-based method that pursues compact
binary codes to minimize the Hamming distances on similar

pairs and maximize those on dissimilar pairs.
In most of the existing supervised hashing methods for

images, input images are represented by some hand-crafted
visual features (e.g. GIST [18]), before the projection and
quantization steps to generate hash codes.

On the other hand, we are witnessing dramatic progress
in deep convolution networks in the last few years. Ap-
proaches based on deep networks have achieved state-of-
the-art performance on image classification [7, 21, 23],
object detection [7, 23] and other recognition tasks [24].
The recent trend in convolution networks has been to in-
crease the depth of the networks [11, 21, 23] and the layer
size [20, 23]. The success of deep-networks-based meth-
ods for images is mainly due to their power of automati-
cally learning effective image representations. In this paper,
we focus on a deep architecture tailored for learning-based
hashing. Some parts of the proposed architecture are de-
signed on the basis of [11] that uses additional 1 × 1 con-
volution layers to increase the representational power of the
networks.

Without using hand-crafted image features, the recently
proposed CNNH [27] decomposes the hash learning pro-
cess into a stage of learning approximate hash codes, fol-
lowed by a deep-networks-based stage of simultaneously
learning image features and hash functions, with the raw
image pixels as input. However, a limitation in CNNH is
that the learned image representation (in Stage 2) cannot
be used to improve the learning of approximate hash codes,
although the learned approximate hash codes can be used
to guide the learning of image representation. In the pro-
posed method, we learn the image representation and the
hash codes in one stage, such that these two tasks have in-



teraction and help each other forward.

3. The Proposed Approach
We assume I to be the image space. The goal of hash

learning for images is to learn a mappingF : I → {0, 1}q1,
such that an input image I can be encoded into a q-bit binary
code F(I), with the similarities of images being preserved.

In this paper, we propose an architecture of deep con-
volution networks designed for hash learning, as shown in
Figure 1. This architecture accepts input images in a triplet
form. Given triplets of input images, the pipeline of the pro-
posed architecture contains three parts: 1) a sub-network
with multiple convolution-pooling layers to capture a rep-
resentation of images; 2) a divide-and-encode module de-
signed to generate bitwise hash codes; 3) a triplet ranking
loss layer for learning good similarity measures. In the fol-
lowing, we will present the details of these parts, respec-
tively.

3.1. Triplet Ranking Loss and Optimization

In most of the existing supervised hashing methods, the
side information is in the form of pairwise labels that indi-
cate the semantical similarites/dissimilarites on image pairs.
The loss functions in these methods are thus designed to
preserve the pairwise similarities of images. Recently, some
efforts [17, 10] have been made to learn hash functions
that preserve relative similarities of the form “image I is
more similar to image I+ than to image I−”. Such a form
of triplet-based relative similarities can be more easily ob-
tained than pairwise similarities (e.g., the click-through data
from image retrieval systems). Furthermore, given the side
information of pairwise similarities, one can easily generate
a set of triplet constraints2.

In the proposed deep architecture, we propose to use a
variant of the triplet ranking loss in [17] to preserve the rel-
ative similarities of images. Specifically, given the training
triplets of images in the form of (I, I+, I−) in which I is
more similar to I+ than to I−, the goal is to find a mapping
F(.) such that the binary code F(I) is closer to F(I+) than
to F(I−). Accordingly, the triplet ranking hinge loss is de-
fined by

ˆ̀
triplet(F(I),F(I+),F(I−))

=max(0, 1− (||F(I)−F(I−)||H − ||F(I)−F(I+)||H))
s.t. F(I), F(I+), F(I−) ∈ {0, 1}q,

(1)

1In some of the existing hash methods, e.g., [27, 12], this mapping (or
the set of hash functions) is defined as F : I → {−1, 1}q , which is
essentially the same as the definition used here.

2For example, for a pair of similar images (I1, I2) and a pair of dissim-
ilar images (I1, I3), one can generate a triplet (I1, I2, I3) that represents
“image I1 is more similar to image I2 than to image I3”.

where ||.||H represents the Hamming distance. For ease of
optimization, natural relaxation tricks on (1) are to replace
the Hamming norm with the `2 norm and replace the in-
teger constraints on F(.) with the range constraints. The
modified loss functions is

`triplet(F(I),F(I+),F(I−))
=max(0, ||F(I)−F(I+)||22 − ||F(I)−F(I−)||22 + 1)

s.t. F(I), F(I+), F(I−) ∈ [0, 1]q.

(2)

This variant of triplet ranking loss is convex. Its (sub-
)gradients with respect to F(I), F(I+) or F(I−) are

∂`

∂b
= (2b− − 2b+)× I||b−b+||22−||b−b−||22+1>0

∂`

∂b+
= (2b+ − 2b)× I||b−b+||22−||b−b−||22+1>0

∂`

∂b−
= (2b− − 2b)× I||b−b+||22−||b−b−||22+1>0,

(3)

where we denote F(I), F(I+), F(I−) as b, b+, b−. The
indicator function Icondition = 1 if condition is true; oth-
erwise Icondition = 0. Hence, the loss function in (2) can
be easily integrated in back propagation in neural networks.

3.2. Shared Sub-Network with Stacked Convolution
Layers

With this modified triplet ranking loss function (2), the
input to the proposed deep architecture are triplets of im-
ages, i.e., {(Ii, I+i , I

−
i )}ni=1, in which Ii is more similar to

I+i than to I−i (i = 1, 2, ...n). As shown in Figure 1, we
propose to use a shared sub-network with a stack of convo-
lution layers to automatically learn a unified representation
of the input images. Through this sub-network, an input
triplet (I, I+, I−) is encoded to a triplet of intermediate im-
age features (x, x+, x−), where x, x+, x− are vectors with
the same dimension.

In this sub-network, we adopt the architecture of Net-
work in Network [11] as our basic framework, where we
insert convolution layers with 1 × 1 filters after some con-
volution layers with filters of a larger receptive field. These
1 × 1 convolution filters can be regarded as a linear trans-
formation of their input channels (followed by rectification
non-linearity). As suggested in [11], we use an average-
pooling layer as the output layer of this sub-network, to re-
place the fully-connected layer(s) used in traditional archi-
tectures (e.g., [7]). As an example, Table 1 shows the con-
figurations of the sub-network for images of size 256×256.
Note that all the convolution layers use rectification activa-
tion which are omitted in Table 1.

This sub-network is shared by the three images in each
input triplet. Such a way of parameter sharing can signif-
icantly reduce the number of parameters in the whole ar-
chitecture. A possible alternative is that, for (I, I+, I−)



Table 1. Configurations of the shared sub-network for input images
of size 256× 256

type filter size/stride output size
convolution 11× 11 / 4 96 × 54 × 54
convolution 1× 1 / 1 96 × 54 × 54
max pool 3× 3 / 2 96 × 27 × 27

convolution 5× 5 / 2 256 × 27 × 27
convolution 1× 1 / 1 256 × 27 × 27
max pool 3× 3 / 2 256 × 13 × 13

convolution 3× 3 / 1 384 × 13 × 13
convolution 1× 1 / 1 384 × 13 × 13
max pool 3× 3 / 2 384 × 6 × 6

convolution 3× 3 / 1 1024 × 6 × 6
convolution 1 × 1 / 1 (50 × # bits) × 6 × 6

ave pool 6× 6 / 1 (50 × # bits) × 1 × 1

in a triplet, the query I has an independent sub-network
P , while I+ and I− have a shared sub-network Q, where
P /Q maps I/(I+, I−) into the corresponding image feature
vector(s) (i.e., x, x+ and x−, respectively)3. The scheme
of such an alternative is similar to the idea of “asymmetric
hashing” methods [15], which use two distinct hash coding
maps on a pair of images. In our experiments, we empir-
ically show that a shared sub-network of capturing a uni-
fied image representation performs better than the alterna-
tive with two independent sub-networks.

3.3. Divide-and-Encode Module

After obtaining intermediate image features from the
shared sub-network with stacked convolution layers, we
propose a divide-and-encode module to map these image
features to approximate hash codes. We assume each target
hash code has q bits. Then the outputs of the shared sub-
network are designed to be 50q (see the output size of the
average-pooling layer in Table 1). As can be seen in Fig-
ure 2(a), the proposed divide-and-encode module firstly di-
vides the input intermediate features into q slices with equal
length4. Then each slice is mapped to one dimension by
a fully-connected layer, followed by a sigmoid activation
function that restricts the output value in the range [0, 1],

3Another possible alternative is that each of I , I+ and I− in a triplet
has an independent sub-networks (i.e., a sub-network P /Q/R corresponds
to I/I+/I−, respectively), which maps it into corresponding intermediate
image features. However, such an alternative tends to get bad solutions.
An extreme example is, for any input triplets, the sub-network P outputs
hash codes with all zeros; the sub-network Q also outputs hash codes with
all zeros; the sub-network R outputs hash codes with all ones. Such kind
of solutions may have zero loss on training data, but their generalization
performances (on test data) can be very bad. Hence, in order to avoid such
bad solutions, we consider the alternative that uses a shared sub-network
for I+ and I− (i.e., let Q = R).

4For ease of presentation, here we assume the dimension d of the input
intermediate image features is a multiple of q. In practice, if d = q×s+c
with 0 < c < q, we can set the first c slices to be length of s+ 1 and the
rest q − c ones to be length of s.

Figure 2. (a) A divide-and-encode module. (b) An alternative that
consists of a fully-connected layer, followed by a sigmoid layer.

and a piece-wise threshold function to encourage the output
of binary hash bits. After that, the q output hash bits are
concatenated to be a q-bit (approximate) code.

As shown in Figure 2(b), a possible alternative to the
divide-and-encode module is a simple fully-connected layer
that maps the input intermediate image features into q-
dimensional vectors, followed by sigmoid activation func-
tions to transform these vectors into [0, 1]q . Compared
to this alternative, the key idea of the overall divide-and-
encode strategy is trying to reduce the redundancy among
the hash bits. Specifically, in the fully-connected alterna-
tive in Figure 2(b), each hash bit is generated on the ba-
sis of the whole (and the same) input image feature vec-
tor, which may inevitably result in redundancy among the
hash bits. On the other hand, since each hash bit is gen-
erated from a separated slice of features, the output hash
codes from the proposed divide-and-encode module may be
less redundant to each other. Hash codes with fewer redun-
dant bits are advocated by some recent research. For exam-
ple, the recently proposed Batch-Orthogonal Locality Sen-
sitive Hashing [5] theoretically and empirically shows that
hash codes generated by batch-orthogonalized random pro-
jections are superior to those generated by simple random
projections, where batch-orthogonalized projections gener-
ate fewer redundant hash bits than random projections. In
the experiments section, we empirically show that the pro-
posed divide-and-encode module leads to superior perfor-
mance over the fully-connected alternative.

In order to encourage the output of a divide-and-encode
module to be binary codes, we use a sigmoid activa-
tion function followed by a piece-wise threshold function.
Given a 50-dimensional slice x(i)(i = 1, 2, ..., q), the out-
put of the 50-to-1 fully-connected layer is defined by

fci(x
(i)) =Wix

(i), (4)

with Wi being the weight matrix.



Figure 3. The piece-wise threshold function.

Given c = fci(x
(i)), the sigmoid function is defined by

sigmoid(c) =
1

1 + e−βc
, (5)

where β is a hyper-parameter.
The piece-wise threshold function, as shown in Figure

3, is to encourage binary outputs. Specifically, for an input
variable s = sigmoid(c) ∈ [0, 1], this piece-wise function
is defined by

g(s) =

 0, s < 0.5− ε
s, 0.5− ε ≤ s ≤ 0.5 + ε
1, s > 0.5 + ε,

(6)

where ε is a small positive hyper-parameter.
This piece-wise threshold function approximates the be-

havior of hard-coding, and it encourages binary outputs in
training. Specifically, if the outputs from the sigmoid func-
tion are in [0, 0.5 − ε) or (0.5 + ε, 1], they are truncated
to be 0 or 1, respectively. Note that in prediction, the pro-
posed deep architecture only generates approximate (real-
value) hash codes for input images, where these approxi-
mate codes are converted to binary codes by quantization
(see Section 3.4 for details). With the proposed piece-wise
threshold function, some of the values in the approximate
hash codes (that are produced by the deep architecture) are
already zeros or ones. Hence, less errors may be introduced
by the quantization step.

3.4. Hash Coding for New Images

After the deep architecture is trained, one can use it to
generate a q-bit hash code for an input image. As shown
in Figure 4, in prediction, an input image I is first en-
coded into a q-dimensional feature vector F(I). Then
one can obtain a q-bit binary code by simple quantization
b = sign(F(I) − 0.5), where sign(v) is the sign function
on vectors that for i = 1, 2, ..., q, sign(vi) = 1 if vi > 0,
otherwise sign(vi) = 0.

Figure 4. The architecture of prediction.

4. Experiments
4.1. Experimental Settings

In this section, we conduct extensive evaluations of the
proposed method on three benchmark datasets:

• The Stree View House Numbers (SVHN)5 dataset is
a real-world image dataset for recognizing digits and
numbers in natural scene images. SVHN consists of
over 600,000 32× 32 color images in 10 classes (with
digits from 0 to 9).

• The CIFAR-106 dataset consists of 60,000 color im-
ages in 10 classes. Each class has 6,000 images in size
32× 32.

• The NUS-WIDE7 dataset contains nearly 270,000 im-
ages collected from Flickr. Each of these images is
associated with one or multiple labels in 81 semantic
concepts. For a fair comparison, we follow the set-
tings in [27, 13] to use the subset of images associated
with the 21 most frequent labels, where each label as-
sociates with at least 5,000 images. We resize images
of this subset into 256× 256.

We test and compare the search accuracies of the pro-
posed method with eight state-of-the-art hashing methods,
including three unsupervised methods LSH [2], SH [26]
and ITQ [4], and five supervised methods CNNH [27],
KSH [12], MLH [16], BRE [8] and ITQ-CCA [4].

In SVHN and CIFAR-10, we randomly select 1,000 im-
ages (100 images per class) as the test query set. For the
unsupervised methods, we use the rest images as training
samples. For the supervised methods, we randomly select
5,000 images (500 images per class) from the rest images
as the training set. The triplets of images for training are
randomly constructed based on the image class labels.

In NUS-WIDE, we randomly select 100 images from
each of the selected 21 classes to form a test query set of
2,100 images. For the unsupervised methods, the rest im-
ages in the selected 21 classes are used as the training set.
For supervised methods, we uniformly sample 500 images
from each of the selected 21 classes to form a training set.

5http://ufldl.stanford.edu/housenumbers/
6http://www.cs.toronto.edu/ kriz/cifar.html
7http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm



Table 2. MAP of Hamming ranking w.r.t different numbers of bits on three datasets. For NUS-WIDE, we calculate the MAP values
within the top 5000 returned neighbors. The results of CNNH is directly cited from [27]. CNNH? is our implementation of the CNNH
method in [27] using Caffe, by using a network configuration comparable to that of the proposed method (see the text in Section 4.1 for
implementation details).

Method
SVHN(MAP) CIFAR-10(MAP) NUS-WIDE(MAP)

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48bits 12 bits 24 bits 32 bits 48 bits
Ours 0.899 0.914 0.925 0.923 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715

CNNH? 0.897 0.903 0.904 0.896 0.484 0.476 0.472 0.489 0.617 0.663 0.657 0.688
CNNH [27] N/A 0.439 0.511 0.509 0.522 0.611 0.618 0.625 0.608
KSH [12] 0.469 0.539 0.563 0.581 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.588

ITQ-CCA [4] 0.428 0.488 0.489 0.509 0.264 0.282 0.288 0.295 0.435 0.435 0.435 0.435
MLH [16] 0.147 0.247 0.261 0.273 0.182 0.195 0.207 0.211 0.500 0.514 0.520 0.522
BRE [8] 0.165 0.206 0.230 0.237 0.159 0.181 0.193 0.196 0.485 0.525 0.530 0.544
SH [26] 0.140 0.138 0.141 0.140 0.131 0.135 0.133 0.130 0.433 0.426 0.426 0.423
ITQ [4] 0.127 0.132 0.135 0.139 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477
LSH [2] 0.110 0.122 0.120 0.128 0.121 0.126 0.120 0.120 0.403 0.421 0.426 0.441

The triplets for training are also randomly constructed based
on the image class labels.

For the proposed method and CNNH, we directly use
the image pixels as input. For the other baseline methods,
we follow [27, 12] to represent each image in SVHN and
CIFAR-10 by a 512-dimensional GIST vector; we represent
each image in NUS-WIDE by a 500-dimensional bag-of-
words vector 8.

To evaluate the quality of hashing, we use four evalu-
ation metrics: Mean Average Precision (MAP), Precision-
Recall curves, Precision curves within Hamming distance
2, and Precision curves w.r.t. different numbers of top re-
turned samples. For a fair comparison, all of the methods
use identical training and test sets.

We implement the proposed method based on the open-
source Caffe [6] framework. In all experiments, our net-
works are trained by stochastic gradient descent with 0.9
momentum [22]. We initiate ε in the piece-wise threshold
function to be 0.5 and decrease it by 20% after every 20, 000
iterations. The mini-batch size of images is 64. The weight
decay parameter is 0.0005.

The results of BRE, ITQ, ITQ-CCA, KSH, MLH and
SH are obtained by the implementations provided by their
authors, respectively. The results of LSH are obtained
from our implementation. Since the network configura-
tions of CNNH in [27] are different from those of the pro-
posed method, for a fair comparison, we carefully imple-
ment CNNH (referred to as CNNH?) based on Caffe, where
we use the code provided by the authors of [27] to imple-
ment the first stage. In the second stage of CNNH?, we
use the same stack of convolution-pooling layers as in Ta-
ble 1, except for modifying the size of the last convolution
to bits × 1 × 1 and using an average pooling layer of size
bits× 1× 1 as the output layer.

8These bag-of-words features are available in the NUS-WIDE dataset.

4.2. Results of Search Accuracies

Table 2 and Figure 2∼4 show the comparison results of
search accuracies on all of the three datasets. Two observa-
tions can be made from these results:

(1) On all of the three datasets, the proposed method
achieves substantially better search accuracies (w.r.t. MAP,
precision within Hamming distance 2, precision-recall, and
precision with varying size of top returned samples) than
those baseline methods using traditional hand-crafted vi-
sual features. For example, compared to the best competi-
tor KSH, the MAP results of the proposed method indicate
a relative increase of 58.8% ∼90.6.% / 61.3% ∼ 82.2 % /
21.2% ∼ 22.7% on SVHN / CIFAR-10 / NUS-WIDE, re-
spectively.

(2) In most metrics on all of the three datasets, the pro-
posed method shows superior performance gains against
the most related competitors CNNH and CNNH?, which
are deep-networks-based two-stage methods. For example,
with respect to MAP, compared to the corresponding sec-
ond best competitor, the proposed method shows a relative
increase of 9.6 % ∼ 14.0 % / 3.9% ∼ 9.2% on CIFAR-10 /
NUS-WIDE, respectively9. These results verify that simul-
taneously learning useful representation of images and hash
codes of preserving similarities can benefit each other.

4.3. Comparison Results of the Divide-and-Encode
Module against Its Alternative

A natural alternative to the divide-and-encode module is
a simple fully-connected layer followed by a sigmoid layer
of restricting the output values’ range in [0, 1] (see Figure
2(b)). To investigate the effectiveness of the divide-and-

9Note that, on CIFAR-10, some MAP results of CNNH? are inferior
to those of CNNH [27]. This is mainly due to different network configu-
rations and optimization frameworks between these two implementations.
CNNH? is implemented based on Caffe [6]. But the core of the original
implementation in CNNH [27] is based on Cuda-Convnet [7].
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Figure 5. The comparison results on SVNH. (a) Precision curves within Hamming radius 2; (b) precision-recall curves of Hamming ranking with 48 bits;
(c) precision curves with 48 bits w.r.t. different numbers of top returned samples.
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Figure 6. The comparison results on CIFAR10. (a) precision curves within Hamming radius 2; (b) precision-recall curves of Hamming ranking with 48
bits; (c) precision curves with 48 bits w.r.t. different number of top returned samples
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Figure 7. The comparison results on NUS-WIDE. (a) precision curves within Hamming radius 2; (b) precision-recall curves of Hamming ranking with 48
bits; (c) precision curves with 48 bits w.r.t. different number of top returned samples

encode module (DEM), we implement and evaluate a deep
architecture derived from the proposed one in Figure 1, by
replacing the divide-and-encode module with its alternative
in Figure 2(b) and keeping other layers unchanged. We refer
to it as “FC”.

As can be seen from Table 3 and Figure 8, the results
of the proposed method outperform the competitor with the
alternative of the divide-and-encode module. For example,
the architecture with DEM achieves 0.581 accuracy with
48 bits on CIFAR-10, which indicates an improvement of
19.7% over the FC alternative. The underlying reason for

the improvement may be that, compared to the FC alter-
native, the output hash codes from the divide-and-encode
modules are less redundant to each other.

4.4. Comparison Results of a Shared Sub-Network
against Two Independent Sub-Networks

In the proposed deep architecture, we use a shared sub-
network to capture a unified image representation for the
three images in an input triplet. A possible alternative to
this shared sub-network is that for a triplet (I, I+, I−),
the query I has an independent sub-network P , while I+



Table 3. Comparison results of the divide-and-encode module and its fully-connected alternative on three datasets.

Method
SVHN(MAP) CIFAR-10(MAP) NUS-WIDE(MAP)

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48bits 12 bits 24 bits 32 bits 48 bits
Ours (DEM) 0.899 0.914 0.925 0.923 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715
Ours (FC) 0.887 0.896 0.909 0.912 0.465 0.497 0.489 0.485 0.623 0.673 0.682 0.691
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Figure 8. The precision curves of divide-and-encode module versus its fully-connected alternative with 48 bits w.r.t. different number of top returned
samples

and I− has a shared sub-network Q, where P /Q maps
I/(I+, I−) into the corresponding image feature vector(s)
(i.e., x, x+ and x−, respectively).

We implement and compare the search accuracies of the
proposed architecture with a shared sub-network to its al-
ternative with two independent sub-networks. As can be
seen in Table 4 and 5, the results of the proposed architec-
ture outperform the competitor with the alternative with two
independent sub-networks. Generally speaking, although
larger networks can capture more information, it also needs
more training data. The underlying reason why the architec-
ture with a shared sub-network performs better than the one
with two independent sub-networks may be that the training
samples are not enough for networks with too much param-
eters (e.g., 500 training images per class on CIFAR-10 and
NUS-WIDE).

Table 4. Comparison results of a shared sub-network against two
independent sub-networks on CIFAR-10.

Methods 12 bits 24 bits 32 bits 48 bits
MAP

1-sub-network 0.552 0.566 0.558 0.581
2-sub-networks 0.467 0.494 0.477 0.515

Precision within Hamming radius 2
1-sub-network 0.527 0.615 0.602 0.625
2-sub-networks 0.450 0.564 0.549 0.588

5. Conclusion
In this paper, we developed a “one-stage” supervised

hashing method for image retrieval, which generates bitwise
hash codes for images via a carefully designed deep archi-
tecture. The proposed deep architecture uses a triplet rank-

Table 5. Comparison results of a shared sub-network against two
independent sub-networks on NUSWIDE.

Methods 12 bits 24 bits 32 bits 48 bits
MAP

1-sub-network 0.674 0.697 0.713 0.715
2-sub-networks 0.640 0.686 0.688 0.697

Precision within Hamming radius 2
1-sub-network 0.623 0.686 0.710 0.714
2-sub-networks 0.579 0.664 0.696 0.704

ing loss designed to preserve relative similarities. Through-
out the proposed deep architecture, input images are con-
verted into unified image representations via a shared sub-
network of stacked convolution layers. Then, these interme-
diate image representations are encoded into hash codes by
divide-and-encode modules. Empirical evaluations in im-
age retrieval show that the proposed method has superior
performance gains over state-of-the-arts.
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