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We frame the design of feature descriptors as the approximation of

an “ideal representation” consisting of a minimal sufficient statistic (the

likelihood function of the scene given imaging data) that is made invariant

to nuisance factors such as vantage point and local contrast transformations

via marginalization. We employ the Lambert-Ambient (LA) Model, the

simplest known to capture the phenomenology of image formation for the

purpose of correspondence, including scaling and occlusion phenomena. We

then seek to relate existing descriptors, such as SIFT and HOG, to the ideal

representation, as well as to develop better approximations of it.

The first consequence of our derivation is that existing descriptors com-

puted from a single image can only approximate the ideal representation

under very restrictive conditions. These include assuming that the scene is

flat, parallel to the image plane, and only allowed to translate parallel to it.

The likelihood function of (a scene that is flat and translating parallel to the

image plane, which can then be though of as) an image I is then approximated

at each point by a “cell” of SIFT/HOG:

hx(θ |I) =
∫

G
px,G(θ |I,v)dP(v) =

=
∫
R2

Nε (θ −∠∇Iv(x))Nσ (v)dµ(v|Iv)

=
∫
R2

Nε (θ −∠∇I(y))Nσ (y− x)‖∇I(y)‖dy (1)

where v ∈ G is the group of planar translations, θ is the free variable, and

Nα is an isotropic Gaussian or bilinear kernel with parameter α = ε,σ . The

assumptions underlying this approximation break in the presence of scaling

and occlusion phenomena.

The second observation is that, by leveraging on multiple images of

the same underlying scene, we can develop better approximations of an

ideal (local) representation. Multiple images afford the ability of separating

nuisance variability (due to vantage point, illumination, partial occlusions)

from intrinsic variability, and therefore better trade off insensitivity to the

former with discriminative power.

We thus introduce two multi-view local representations. The first is based

on a sampling approximation of the ideal descriptor, and is named multi-view

HoG (MV-HoG). It is a natural extension of single-view descriptors based on

histogram of gradient orientations such as SIFT, HOG and their variants:

hx,G(θ |{It}
T
t=1)

.
=

1

T

T

∑
t=1

∫
R2

Nε (θ −∠∇It(y))Nσ (y− x)Es(σ)dµ(y)dσ .

where the images are assumed to represent a sufficiently exciting sample

of vantage points. Note that, in addition to small translations parallel to

the image plane, translations orthogonal to it, resulting in a change of scale

σ , are also marginalized relative to a density E with range parameter s.

The temporal averaging is then charged with marginalizing rotations of the

surface, by sampling the view sphere.

Alternatively, one can use the samples to infer a point-estimate of the

scene’s geometry, Ŝ ⊂ R
3 and reflectance (albedo) ρ̂ : S → R

+, and then

marginalize rotations (SO(3)) explicitly, giving raise to reconstructive HoG,

or R-HoG:

hx,G(θ |ρ̂, Ŝ) =∫
SO(3)×R2

Nε (θ −∠∇ρ̂ ◦g◦π−1

Ŝ
(y))dPSO(3)(g)Nσ (y− x)Es(σ)dµ(y)dσ

Although these multi-view descriptors are very crude approximations

of an ideal representation, they still out-perform descriptors computed in a
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(a) Real (11×11)
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Figure 1: Precision-Recall Curves. Precisions (ordinate) over recall rates

(abscissa) with F1-scores in the legends.

single-view such as single-view SIFT (SV-SIFT), SURF, DAISY, as well as a

gated restricted Boltzmann machine (GRBM) developed for correspondence

purposes. In theory, they should not outperform an orbit of descriptors com-

puted independently on each of the images {It}
T
t=1 (Orb-SIFT), although in

practice they often do because of the unusual way in which many descriptors

are normalized (for instance using the ℓ2 norm). Convolutional architectures

can also be related to an ideal representation, as we further explore in [1]. A

restriction of MV-HoG to a single image is presented in [3].
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