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Abstract

Conditional Random Fields (CRFs) are one of the core
technologies in computer vision, and have been applied to
a wide variety of tasks. Conventional CRFs typically de-
fine edges between neighboring image pixels, resulting in a
sparse graph over which inference can be performed effi-
ciently. However, these CRFs fail to model more complex
priors such as long-range contextual relationships. Fully-
connected CRFs have thus been proposed. While there
are efficient approximate inference methods for such CRFs,
usually they are sensitive to initialization and make strong
assumptions. In this work, we develop an efficient, yet gen-
eral SDP algorithm for inference on fully-connected CRFs.
The core of the proposed algorithm is a tailored quasi-
Newton method, which solves a specialized SDP dual prob-
lem and takes advantage of the low-rank matrix approxi-
mation for fast computation. Experiments demonstrate that
our method can be applied to fully-connected CRFs that
could not previously be solved, such as those arising in
pixel-level image co-segmentation.

1. Introduction
Semantic image segmentation, or pixel labelling, is a key

problem in computer vision. Given an image, the task is to
label every pixel against one or multiple pre-defined object
categories. It is clear that to achieve satisfactory results, one
must exploit contextual information. Scalability and speed
of the algorithm are also of concerns, if we are to design an
algorithm applicable to high-resolution images.

Conditional random fields (CRFs) have been one of
the most successful approaches to semantic pixel labelling,
which solves the problem as maximum a posteriori (MAP)
estimation. Standard CRFs contain unary potentials that
are typically defined on low-level local features of texture,
color, and locations. Edge potentials, which are typically
defined on 4- or 8-neighboring pixels, consist of smooth-
ness terms that penalize label disagreement between simi-
lar pixels, and terms that model contextual relationships be-
tween different classes. Although these CRF models have

achieved encouraging results for segmentation, they fail to
capture more complex priors such as long-range contextual
information.

In the literature, fully-connected CRFs have been pro-
posed for this purpose. The main challenge for inference on
fully-connected CRFs stems from the computational cost.
A fully-connected CRF over N image pixels has N2 edges.
Even for a small image with a few thousand pixels, the num-
ber of edges can be a few million. Although there have
been a variety of methods for MAP estimation [1–10], they
are usually computationally infeasible for such cases. The
authors of [11, 12] have proffered an efficient mean field ap-
proximation method for MAP inference in multi-label CRF
models with fully-connected pairwise terms. In their algo-
rithms, the computational bottleneck can be expressed as
the product of kernel matrices and column vectors. Given
the assumption that the pairwise terms are in the form of a
weighted mixture of Gaussian kernels, a filter-based method
is used to accelerate the computation of the matrix-vector
product in [11, 12]. Other work [13, 14] on the MAP infer-
ence in fully-connected CRFs also incorporate filter-based
methods for fast computation, yet with different assump-
tions. The method proposed in [13] can be applied on gen-
eralized RBF kernels, instead of the original Gaussian ker-
nels [11]. An efficient inference algorithm was developed
in [14] for a special type of fully-connected CRF, in which
the edge potentials are defined to capture spatial relation-
ships among different objects, and only depend on their rel-
ative positions (that is they are spatially stationary). Note
that the assumptions in [11–14] limit the practical value of
these approaches. Note also that the mean field approxi-
mation adopted in [11–13] and the quadratic programming
approach used in [14] may converge to local optima.

In general, semidefinite programming (SDP) relaxation
provides accurate solutions for MAP estimation problems,
but it is usually computationally inefficient (see [3] for
a comparison of different relaxation methods). Standard
interior-point methods require O(q3 + qn3 + q2n2) flops
to solve a generic SDP problem in worst-case, where n
and q are the semidefinite matrix dimension and the num-
ber of linear constraints respectively. Recently, several scal-



able SDP methods have been proposed for MAP estimation.
Huang et al. [15] proposed an alternating direction methods
of multipliers method (ADMM) to solve large-scale MAP
estimation problems. Wang et al. [16] presented an efficient
dual approach (refer to as SDCut), which can also be ap-
plied for MAP estimation. However, their methods still can-
not be applied directly to large-scale fully-connected CRFs.

In this paper, a more efficient SDP algorithm is proposed
for MAP estimation in fully-connected CRFs. There are
two key contributions in this work: 1. An efficient low-rank
SDP approach (based on SDCut) is proposed for MAP esti-
mation in large-scale fully-connected CRFs. Several signifi-
cant improvements over SDCut are presented, which makes
SDCut much more scalable. The proposed SDP method
solves a convex problem, and generally provides more sta-
ble and accurate solutions than mean field approximation.
2. Similar to the mean field approach [11], the most compu-
tationally expensive part of the proposed SDP method is cal-
culating the product of kernel matrices and column vectors.
Instead of the filter-based method used in [11], low-rank ap-
proximation methods for SPSD kernels (whose kernel ma-
trix is symmetric positive semidefinite) are seamlessly in-
tegrated into our SDP method for fast computation. The
use of low-rank approximation relaxes the limitation on the
pairwise term from being (a mixture of) Gaussian kernels to
all symmetric positive-semidefinite kernels.

As a result, our method is much more general and scal-
able, and so has a broader range of applications. The pro-
posed SDP approach can handle fully-connected CRFs of
#states×#variables up to 106. In particular, we show that
on an image co-segmentation application, the fast method
of [11] is not applicable while our method achieves supe-
rior segmentation accuracy. To our knowledge, our method
is the first pixel-level co-segmentation method. All pre-
vious co-segmentation methods have relied on super-pixel
pre-processing in order to make the computation tractable.
Wang et al. [17] and Frostig et al. [18] also proposed
efficient approaches which find near-optimal solutions to
SDP relaxation to MAP problems. The main difference
is that their methods solve (generally nonconvex) quadrat-
ically constrained quadratic programs by projected gradient
descent, while ours uses quasi-Newton methods to solve a
convex semidefinite least-square problem. Notation is listed
in Table 1. An extended version of this work is available at
http://arxiv.org/abs/1504.01492.

2. Fully-connected Pairwise CRFs with SPSD
Kernels

Consider a random field over N random variables
x = [x1, x2, . . . , xN ]> conditioned on the observation I.
Each variable can be assigned a label from the set L =
{1, . . . , L}. The energy function of a CRF (I,x) can be

X A matrix (bold upper-case letters).
x A column vector (bold lower-case letters).
Sn The space of n× n symmetric matrices.
Sn+ The cone of n× n symmetric positive semidefinite

(SPSD) matrices.
Rn The space of real-valued n× 1 vectors.

Rn+,Rn− The non-negative and non-positive orthants of Rn.
In The n× n identity matrix.
0 An all-zero vector with proper dimension.
1 An all-one vector with proper dimension.

≤,≥ Inequality between scalars or element-wise inequal-
ity between column vectors.

diag(X) The vector of the diagonal elements of the input ma-
trix X.

Diag(x) The n × n diagonal matrix whose main diagonal
vector is the input vector x.

trace(·) The trace of a matrix.
rank(·) The rank of a matrix.
δ(cond) The indicator function which returns 1 if cond is

ture and 0 otherwise.
‖·‖F Frobenius-norm of a matrix.
〈·, ·〉 Inner product of two matrices.
◦ Hadamard product of two matrices.
⊗ Kronecker product of two matrices.

∇f(·) The first-order derivative of function f(·).
∇2f(·) The second-order derivative of function f(·).

n! The factorial of a non-negative integer n.

Table 1: Notation.

expressed by the following Gibbs distribution:

P (x|I) :=
1

Z(I)
exp(−E(x|I)), (1)

where E(x|I) denotes the Gibbs energy function w.r.t. a la-
belling x ∈ LN , and Z(I) :=

∑
x∈LN exp(−E(x|I)) is the

partition function. In the rest of the paper, the conditioning
w.r.t. I is dropped for simplicity of notation.

Assuming that E(x) only contains unary and pairwise
terms, the MAP inference problem for the CRF (I,x) is
equivalent to the following energy minimization problem:

min
x∈LN

E(x) :=
∑
i∈N

ψi(xi) +
∑

i,j∈N ,i<j
ψi,j(xi, xj), (2)

where N := {1, . . . ,N}. ψi : L → R and ψi,j : L2 → R
correspond to the unary and pairwise potentials respec-
tively. The pairwise potentials considered in this paper can
be written as:

ψi,j(xi,xj) := µ(xi,xj)

M∑
m=1

w(m)k(m)(fi, fj), (3)

where fi, fj ∈ RD indicate D-dimensional feature vectors
corresponding to variables xi and xj respectively. k(m) :
RD×RD → R denotes the function of the m-th SPSD ker-
nel and w(m) ∈ R+ is the associated weight. Following the
term in [11], µ : L2 → [0,1] is used to represent a symmet-
ric label compatibility function, which has the properties
that µ(l,l′) = µ(l,l′),∀l,l′ ∈ L and µ(l,l) = 0,∀l ∈ L. The
label compatibility function penalizes similar pixels being
assigned with different/incompatible labels. A simple label
compatibility function would be given by Potts model, that
is µ(l,l′) = δ(l 6= l′). The form of pairwise potential in (3)



is very general, and can be used to represent many poten-
tials of practical interest.

Mean field approximation is used in [11] for solving
problem (2), which is considered to be state-of-the-art.
A filter-based method [19] is adopted in [11] to acceler-
ate the computation.In the following two sections, we will
briefly revisit mean field approximation and the filter-based
method, especially their respective limitations.

2.1. Mean Field Approximation
In mean field approximation [20], a distribution Q(x) is

introduced to approximate the Gibbs distribution P (x|I), in
which the marginals are supposed to be independent to each
other such that Q(x) = Πi∈NQi(xi). The KL-divergence
D(Q‖P ) is minimized by iteratively applying the following
update equation:

Qi(l) =
1

Zi
exp

(
− ψi(l)−

∑
l′∈L

µ(l,l′)

M∑
m=1

w(m)
∑

j∈N ,j 6=i

k(m)(fi, fj)Qi(l
′)
)
, (4)

where Zi is the nomalization factor.
The computational bottleneck in updating the above

equation can be expressed as the matrix-vector product
K(m)ql,∀l∈L,m= 1, · · · ,M , where K(m)∈SN+ denotes
the kernel matrix corresponding to k(m), that is K(m)

ij =

k(m)(fi, fj), and ql = [Q1(l), · · · , QN (l)]>,∀l ∈ L. The
naive implementation of the matrix-vector product needs
O(N2) time. Krähenbühl and Koltun [11] proposed to use a
filter-based approach to compute the matrix-vector product
in O(N) time, which will be discussed in the next section.

One significant limitation of mean field approximation
is that it may converge to one of potentially many local op-
tima, because the variational problem to be optimized may
be non-convex. A consequence of this non-convexity is that
mean field is often sensitive to the initialization of Q.

2.2. Filter-based Matrix-vector Product
Filter-based methods [19] have been used in [11] to

speed up the above matrix-vector product. The method in
[11] is based on the assumption that pairwise potentials are
Gaussian kernels:

k(m)(fi,fj) = exp

(
−1

2
(fi − fj)

>Λ(m)(fi − fj)

)
, (5)

where Λ(m) ∈ SD+ , m = 1, 2, · · · ,M . The product of a
Gaussian kernel matrix and an arbitrary column vector can
be expressed as a Gaussian convolution w.r.t. Λ(m) in fea-
ture space (see [11, 19] for more details). From the view-
point of signal processing, the Gaussian convolution can
be seen as a low-pass filter over the feature space. Then
the convolution result can be recovered from a set of sam-
ples whose spacing is proportional to the standard devia-

tion of the filter. A number of filtering methods [19, 21]
can be used to compute the convolution efficiently, in which
the computational complexity and memory requirement are
both linear in N .

Filter-based approaches have a number of limitations,
however:
1. In general, the pairwise potentials are limited to Gaussian
kernels over a Euclidean feature space.
2. The feature dimension cannot be very high. The bilateral
filtering method in [21] has an exponential complexity w.r.t.
the dimension D. The time complexity using a permutohe-
dral lattice [19] is quadratic in D, which works well only
when the input dimension is 5 ∼ 20. Because it does not
create new lattice points during the blur step, an accuracy
penalty is accumulated with the growth of feature dimen-
sion.

In the following sections, we propose alternative meth-
ods for the matrix-vector product and MAP inference to
overcome the aforementioned limitations.

3. Matrix-vector Product Based on Low-rank
Approximation

One key contribution of this paper is the use of a low-
rank approximation to the positive semidefinite kernel ma-
trix, based on which low-rank quasi-Newton methods are
developed for large-scale SDP CRF inference. We propose
to approximate an SPSD kernel matrix K ∈ SN+ by a low-
rank representation: K ≈ ΦΦ>, where Φ ∈ RN×RK and
RK � N , such that both of the computational complex-
ity and memory requirement for computing the aforemen-
tioned matrix-vector product are linear in N . Compared to
[19, 21], the pairwise potential function is generalized to
any positive semidefinite kernel function and there is no re-
striction on the input feature dimension.

The optimal low-rank approximation can be obtained by
eigen-decomposition, while it is computationally inefficient
whose computational complexity is generally cubic in N .
There are a number of low-rank approximation methods
achieving linear complexity inN , including Nyström meth-
ods [22–24], incomplete Cholesky decomposition [25, 26],
random Fourier features [27, 28], and homogeneous kernel
maps [29]. For detailed discussion, please refer to the re-
view papers [30–32]. We adopt Nyström methods [29] in
this paper for the low-rank approximation of kernel matri-
ces.

Nyström methods can be used to approximate a positive
semidefintie matrix K ∈ SN+ , by sample R0 � N columns
of K (refer to as landmarks). Firstly K is expressed as:

K =

[
W K2,1

>

K2,1 K2,2

]
, (6)

where W ∈ SR0 denotes the intersection of the sampled
R0 columns and rows. The matrix K2,2 ∈ SN−R0 can be



approximated as:
K2,2 ≈ K2,1ΓRΣ−1R Γ>RK2,1

>, (7)

where R ≤ R0 and ΣR = Diag([λ1, . . . , λR]>). λ1 ≥
λ2 ≥ · · · ≥ λR > 0 are the R-largest eigenvalues of W
and ΓR contains the corresponding (column) eigenvectors.
Note that ΓRΣRΓ>R is the best rank-R approximation to
W. Then we have a rank-R approximation to K:

K ≈
([

W
K2,1

]
ΓRΣ

− 1
2

R

)([
W

K2,1

]
ΓRΣ

− 1
2

R

)>
, (8)

which is proved to have a bounded error to the optimal rank-
R approximation given by the eigen-decomposition [31].

There are several strategies to sample representative
landmarks, i.e., columns of K, including the standard uni-
form sampling [23], non-uniform sampling [24] and k-
means clustering [33]. In this paper, we adopt the k-means
method in [33] to select landmarks. At each round of k-
means, only R columns of K, rather than the entire matrix
K, is required to be instantiated. Note that for Nyström
methods, the positive semidefinite matrix K to be approxi-
mated can be any kernel matrix K(m) or the linear combi-
nation

∑M
m=1 w

(m)K(m).

4. SDP Approach to MAP Estimation
SDP Relaxation In this section, we introduce an SDP re-

laxation to the problem (2). Throughout the rest of this pa-
per, the label compatibility function is assumed to be given
by Potts model, that is µ(l,l′) = δ(l 6= l′)1.

By defining X ∈ {0,1}N×L, H ∈ RN×L and K ∈
SN+ as Xi,l = δ(xi = l), Hi,l = ψi(l) and Ki,j =∑M
m=1 w

(m)k(m)(fi, fj), the problem (2) can be expressed
as the following binary quadratic problem (BQP)2:

min
X∈{0,1}N×L

Ẽ(X) := 〈H,X〉 − 1

2
〈XX>,K〉 (9a)

s.t.
∑L
l=1Xi,l = 1, ∀i ∈ N , (9b)

Note that E(x) = Ẽ(X) + 1
21>K1 for equivalent x and X.

By introducing Y :=
[

IL
X

] [
IL
X

]>
, the corresponding

SDP relaxation to problem (9) can be expressed as:

min
Y∈SN+L

+

〈Y,
1

2

[
0 H>

H −K

]
〉, (10a)

s.t. Yl,l = 1, l ∈ L, (10b)
1

2
(Yl,l′ + Yl′,l) = 0, l ≤ l′, l,l′ ∈ L, (10c)

1

2

∑L
l=1(Yi+L,l + Yl,i+L) = 1, i ∈ N , (10d)

Yi+L,i+L = 1, i ∈ N . (10e)
Clearly we have trace(Y) = N +L which is implicitly en-
coded by the linear constraints. The non-convex constraint

1The SDP relaxation corresponding to an arbitrary label compatibility
function is discussed in the extended version.

2The derivation from (2) to (9) can be found in the extended version.

rank(Y) = L is dropped by the SDP relaxation.
In the above formulation, all the constraints (10b), (10c),

(10d), (10e) are linear w.r.t. Y. Therefore they can be re-
written in terms of inner products, that is 〈Y,Bi〉 = bi, i =
1, 2, · · · , q, where Bi ∈ SN+L, b ∈ Rq and q = 2N +
L(L+ 1)/2 is the total number of linear constraints in (10).
The problem (10) can thus be expressed as the following
general form:

min
Y∈SN+L

+

p(Y) := 〈Y,A〉, (11a)

s.t. 〈Y,Bi〉 = bi, i = 1, 2, · · · , q, (11b)

where A = 1
2

[
0 H>

H −K

]
.

4.1. Low-rank Quasi-Newton Methods
In this section, several major improvements are proposed

to make SDCut [16] scalable to the large-scale energy min-
imization problem (9), which is another key contribution of
this work.

4.1.1 SDCut Formulation

SDCut [16] solves the following approximation of (11) us-
ing quasi-Newton methods:

min
Y∈Sn+

pγ(Y) := 〈Y,A〉+
1

2γ
‖Y‖2F −

n2

2γ
, (12a)

s.t. 〈Y,Bi〉 = bi, i = 1, 2, · · · , q, (12b)
where γ > 0 is a parameter and n = N + L. Given a suffi-
ciently large γ, the difference between the optimal solutions
to (12) and (11) can be very small [16]. Note that −n

2

2γ is a
constant and it can be removed from the optimization prob-
lem.

Remark 1. The Lagrangian dual problem of (12) can be
simplified to

max
u∈Rq

dγ(u) := −γ
2
‖(C(u))+‖2F−u>b− n

2

2γ
, (13)

where C(·) : Rq → Sn is defined as C(u) := −A −∑q
i=1 uiBi, and (·)+ : Sn → Sn+ is defined as (Y)+ =

ΓDiag(max(0,λ))Γ>. λ := [λ1, . . . , λn]> and Γ stand for
the respective eigenvalues and eigenvectors of Y, that is
Y = ΓDiag(λ)Γ>. The relationship between the optimal
solution to the primal (12), Y?, and the solution to the dual
(13), u?, is Y? = γ(C(u?))+.

The proof of the above results can be found in [16]. As-
suming that trace(Y)=n, it is shown in [16] that the objec-
tive function value of the dual (13) for any u ∈ Rq yields a
lower-bound to the optimal objective value of the BQP (9).

The objective function of (13), dγ , is differentiable but
not necessarily twice differentiable, and its gradient is:

∇dγ(u)=−γ
[
〈(C(u))+ ,B1〉, · · · , 〈(C(u))+ ,Bq〉

]>−b.

(14)



Algorithm 1 LR-SDCut algorithm for MAP estimation.

Input: A, {Bi}i=1,2,··· ,q , b, γ, Kmax, τ > 0, r � N .
Initialization: u(0) = 0, Ẽ? = + inf , A = A − νIN where ν is the1
r-th smallest eigenvalue of A.
for k = 0, 1, 2, . . . ,Kmax do2

Step1: u(k+1) = u(k) − ρH∇dγ(u(k)), where H is updated to3
approximate (∇2dγ(u(k)))−1 and 0 < ρ ≤ 1 is the step size.
Step2: X(k+1) = Round(γ(C(u(k+1)))+).
Step3: If Ẽ(X(k+1)) < Ẽ?, X? = X(k+1).

Step4: Exit, if
(
dγ(u

(k+1))−dγ(u
(k))

)
max{|dγ(u(k+1))|,|dγ(u(k))|,1}

≤ τ .

end4
Output: X?, Ẽ?.

Such that Wang et al. [16] adopted quasi-Newton methods
to solve the dual problem (13). At each iteration of quasi-
Newton methods, only the objective function dγ and its gra-
dient (14) need to be computed, where the computational
bottleneck is the calculation of (C(u))+, which needs all
the positive eigenvalues and the corresponding eigenvectors
of C(u).

Although it is shown in [16] that SDCut already runs
much faster than standard interior-point methods, there are
still several issues to be addressed for the problem to be
solved in this work:
1. It is shown in [16] that rank((C(u))+) drops signif-
icantly in the first several iterations, and Lanczos meth-
ods [34] can be used to efficiently compute a few leading
eigenpairs. However, because (C(u))+ is not necessarily
low-rank in the initial several iterations, much of time may
be spent on the first several eigen-decompositions. In the
CRFs considered in this paper, there are up to 681,600 vari-
ables. Using the original SDCut method, the time spent on
the first several iterations can be prohibitive.
2. In general, a BFGS-like method has a superlinear conver-
gence speed under the condition that the objective function
is twice continuously differentiable. However, the dual ob-
jective function (13) is not necessarily twice differentiable.
So the convergence speed of SDCut is unknown. In practice,
SDCut usually needs more than 100 iterations to converge.

In the next two sections, we introduce two improvements
to the SDCut method, which address the above two prob-
lems and increase the scalability of SDCut significantly.
The improved method is refer to as LR-SDCut and its pro-
cedure is summarized in Algorithm 1.

4.1.2 A Low-rank Initial Point

If the initialization of the dual variable u(0) is 0, then
we have C(u(0)) = −A. Without affecting the opti-
mal solution to (11), A can be perturbed so as to reduce
rank((C(u(0)))+) to a small integer, based on:
1. For Y ∈ Sn+ ∩ {trace(Y) = n}, 〈Y,A + νIn〉 =
〈Y,A〉 + νn. So the matrix A in the problem (11) can be
equivalently replaced by A + νIn, ∀ν 6= 0.

2. Suppose that λ 6= 0 and x ∈ Rn is an eigenpair of
A ∈ Sn, i.e., Ax = λx, then A + νIn has an eigenpair:
λ+ ν and x, ∀ν 6= 0.

To decrease the rank of
(
C(u(0))

)
+

to r � n, we
can equivalently replace A by A − νIn, where ν is the
r-th smallest eigenvalue of A.

4.1.3 Rounding Schemes and Early Stop

Traditionally, a feasible binary solution X to the BQP prob-
lem (9) is obtained by rounding the optimal solution Y? to
the corresponding SDP formulation (12). The rounding pro-
cedure will be carried out until the quasi-Newton algorithm
converges. In contrast, we perform the rounding procedure
on the non-optimal solution Y(k) := γ

(
C(u(k))

)
+

at each
iteration k of the quasi-Newton algorithm (Step2 in Algo-
rithm 1). In practice, we find that the dual objective value
of (13), i.e. the lower-bound to the optimal value of Ẽ(X),
increases dramatically in the first several iterations. Simul-
taneously, the value of Ẽ(X(k)) also drops significantly for
the first several ks. This observation inspires us to stop the
quasi-Newton algorithm long before convergence, with lit-
tle decline in the quality of the final binary solution to (9).

In this work, we adopt the random rounding scheme pro-
posed in [35] to derive X from Y(k) := γ(C(u(k)))+.
Note that because Y(k) is positive semidefinite, it can be
decomposed to Y(k) = ΨΨ>, where Ψ ∈ RN×RY and
RY = rank(Y(k)). The rounding scheme can be expressed
in the following two steps:
1. Random Projection: X̂ = ΨP, where P ∈ RRY ×L and
each entry Pi,j is independently sampled from the standard
Gaussian distribution with mean 0 and variance 1.
2. Discretization: Obtain X ∈ {0,1}N×L by discretizing
the above X̂, that is,Xi,l = δ(X̂i,l > X̂i,l′ ,∀l′ ∈ L, l′ 6= l).

4.2. Computational Cost and Memory Requirement

The computational bottleneck of LR-SDCut is the eigen-
decomposition of C(u) at each iteration, which is per-
formed by Lanczos methods [34] in this paper. Lanczos
methods only require users to implement the matrix-vector
product C(u)d = −Ad − (

∑q
i=1 uiBi)d, where d ∈ Rn

denotes a so-called “Lanczos vector” produced by Lanczos
algorithms iteratively. In this section, we will show how
to accelerate the computation of this matrix-vector product
by exploiting the specific structures of A and {Bi}i=1,··· ,q ,
and then give the computational cost and memory require-
ment of LR-SDCut.

For the problem (10), A = 1
2

[
0 H>

H −K

]
and∑q

i=1 uiBi =
[

Diag(u1) +
1
2LTri(u2)

1
2u>3 ⊗ 1

1
2u3 ⊗ 1> Diag(u4)

]
, where

u1 ∈ RL, u2 ∈ RL(L−1)/2,u3,u4 ∈ RN denote the re-
spective dual variables w.r.t. constraints (10b), (10c), (10d),
(10e) and such that u =

[
u>1 ,u

>
2 ,u
>
3 ,u
>
4

]>
. LTri(u) :



RL(L−1)/2 → SL produces an L × L symmetric matrix
whose lower triangular part is made up of the elements
of the input vector u ∈ RL(L−1)/2, that is LTri(u) ={

0 if i = j
u(L−1)!/j!+i−j if i > j
u(L−1)!/i!+j−i if i < j

. Then C(u)d is expressed as:

C(u)d = (15)

− 1

2

[
H>d2

Hd1 −Kd2

]
︸ ︷︷ ︸
Ad:O(NL+NRK)

−
[

u1 ◦ d1 + 1
2LTri(u2)d1 + 1

2 (u
>
3 d2)1

1
2 (1
>d1)u3 + u4 ◦ d2

]
︸ ︷︷ ︸

(
∑q
i=1 uiBi)d:O(L2+N)

,

where d1 ∈ RL,d2 ∈ RN and such that d =
[
d>1 ,d

>
2

]>
.

Note that the calculation of Kd2 can be accelerated by
Nyström methods. Accordingly, the computational cost of
solving (10) by LR-SDCut is:(
O
(

(N + L)R2
Y + (NRK +NL+ L2)︸ ︷︷ ︸

matrix-vector product (15)

RY

)
︸ ︷︷ ︸

Lanczos factorization

× #Lanczos-Iters
)
× #Descent-Iters, (16)

and the memory requirement is O(N(L + RY + RK) +
LRY ), where RK and RY denotes the rank of K and
(C(u))+ respectively. As mean field approximation, the
computational complexity is also linear in N .

5. Applications
To show the superiority of the proposed method, we eval-

uate it and other methods on two applications in this section:
image segmentation and image co-segmentation. In the fol-
lowing our experiments, the maximum number of iterations
Kmax for LR-SDCut is set to 10; the initial rank r is set to
20; and the penalty parameter γ is set to 1000.

5.1. Application 1: Image Segmentation

Following the work in [11], pairwise potentials for image
segmentation are expressed in the following form:

K
(1)
i,j = exp

(
−|pi − pj |2

2θ2α
− |ci − cj |2

2θ2β

)
, (17)

where pi and ci are the position and color value of pixel
i respectively, and similarly for pj and cj . The matrix de-
fined in (17) corresponds to the appearance kernel which pe-
nalizes the case that two adjacent pixels with similar color
and different labels. The label compatibility function is
given by the Potts model µ(l,l′) = δ(l 6= l′).

The kernel matrix K(1) can be decomposed to the
Hadamard product of two independent kernel matrices:
K(1) = K

(1)
p ◦K

(1)
c , where k(1)p (fi,fj) = exp

(
−|pi−pj |2

2θ2α

)
and k(1)c (fi,fj)=exp

(
−|ci−cj |2

2θ2β

)
.

Nyström methods are performed on K
(1)
p and K

(1)
c in-

dividually: K
(1)
p ≈ ΦpΦ

>
p and K

(1)
c ≈ ΦcΦ

>
c , where

Unary MF+filter MF+Nys. LR-SDCut
Time(s) NA 0.29 6.6 74
Accu. 0.79 0.83 0.83 0.83
Energy 1.29 · 105 9.79 · 104 1.15 · 105 9.02 · 104

Table 2: Quantitative results of image segmentation. Our method runs
slower than mean field methods but gives significantly lower energy. Un-
fortunately, the lower energy does not lead to better segmentation accuracy.

Φp ∈ RN×Rp and Φc ∈ RN×Rc . Then we have:

K(1)d = (K(1)
p ◦K(1)

c )d (18a)

= diag
(
ΦpΦ

>
pDiag(d)ΦcΦ

>
c

)
(18b)

=
((

ΦpΦ
>
p (Diag(d)Φc)

)
◦Φc

)
1. (18c)

This computation requires O(NRcRp) operations (Rc and
Rp are set to 20 and 10 respectively). Performing Nyström
methods on K

(1)
p and K

(1)
c separately instead of on K(1)

directly brings two benefits: 1) The memory requirement
may be reduced from RcRp to Rc + Rp; 2) For multi-
ple images with the same size, we only need to perform
Nyström on K

(1)
p once, as the input features (positions

pi, i = 1, · · · , N ) are the same for these images.
The improved Nyström method [33] is adopted to obtain

the low rank approximation of K
(1)
c and K

(1)
p . k-means

clustering is used in [33] to select representative landmarks.
Experiments The proposed algorithm is compared with

mean field on MSRC 21-class database. The test data are
93 representative images with accurate ground truth pro-
vided by [11]. The unary potentials are also obtained from
[11]. The parameters θα, θβ and w(1) are set to 60, 20 and
10 respectively. The iteration number limit for mean field
inference is set to 20. All experiments are conducted us-
ing a single CPU with 10GB memory. As for the matrix-
vector product in the mean field method, both the filter-
based and Nyström-based approaches are evaluated (refer to
as MF+filter and MF+Nys. respectively). The evaluated im-
ages have around 60,000 pixels and so the number of MRF
variables is also around 60,000 for each image.

Our method achieves similar segmentation results to the
mean field approach. In Table 2, quantitative results are
demonstrated. Although the computational complexity of
mean field and our method are both linear in N , mean field
is still faster than ours in this experiment. This is partially
because the code of mean field is highly optimized using
C++, while ours is unoptimized. A speed up is expected
if our code is further optimized and parallelized. Note that
the filter-based method [19] can be also incorporated into
our algorithm to compute matrix-vector products, which
is likely to be faster than Nyström methods but limited to
Gaussian kernels in general.

Despite the slower speed, our method achieves signif-
icantly lower energy value than mean field, which shows
that our method is better from the viewpoint of energy min-
imization. Unfortunately, the lower energy of our solution



Data #pics N LR-SDCut MF+Nys. N SDLR SDCut
Cow 10 681600 1415s 1965s 6713 9530s 307s
Sheep 8 545280 1066s 2045s 5375 6932s 583s
Tree 9 613440 1137s 1490s 6026 1090s 1316s

Table 3: Running times for image co-segmentation. Our method is slightly
faster than mean field. The number of MRF variables N for two groups of
evaluated methods are shown in the third and sixth columns. The problems
solved by our approach are much larger than those of SDLR and SDCut.

LR-SDCut MF+Nys. SDLR SDCut
Cow 0.73(−1.59 · 105) 0.67(−1.58 · 105) 0.66 0.69
Sheep 0.74(−8.07 · 104) 0.49(−6.87 · 104) 0.57 0.58
Tree 0.83(−2.23 · 105) 0.65(−2.03 · 105) 0.66 0.68

Table 4: Segmentation accuracy (energy) of image co-segmentation. Our
method and mean field work on original pixels, while SDLR and SD-
Cut work on superpixels. For all the three evaluated datasets, our method
achieves the lowest energies and highest segmentation scores.
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Figure 2: Rank and energy at each iteration for co-segmentation on the
“cow” data set. Both of the rank of (C(u(k)))+ and the energy of binary
solution y(k) decrease significantly in the first several iterations.

does not lead to better segmentation performance. Actually,
all of the evaluated methods have similar segmentation ac-
curacy.

5.2. Application 2: Image Co-segmentation

The image co-segmentation problem requires that the
same object be segmented from multiple images. There are
two optimization criteria: the color and spatial consistency
within one image and the separability between foreground
and background over all images. There is no unary poten-
tials for image co-segmentation and the pairwise potentials
are shown in the following:

K
(1)
i,j = ϕij exp

(
−|pi − pj |2

2θ2α
− |ci − cj |2

2θ2β

)
, (19a)

K(2) = ΩN (κNIN + K̃(2))−1ΩN , (19b)
where ϕij = 1 if pixels i and j locate in the same image;
ϕij = 0, otherwise. κ > 0 is a regularization parame-
ter. K(1) is a block-diagonal matrix, and the matrix-vector
product for K(1) can be computed using the method de-
scribed in Section 5.1. K(2) is the inter-image discrimi-
native clustering cost matrix (see [36] for details). ΩN =
IN − 1

N 11> is the centering projection matrix, and K̃(2) is
the χ2 kernel matrix of sift features. K̃(2) can be approxi-

mated by a low-rank decomposition: K̃(2) ≈ Φ̃Φ̃
>

, where
Φ̃ ∈ RN×RK2 . Based on the matrix inversion lemma, we
have:

K(2) =
1

κN
ΩN

(
IN − Φ̃(κNID + Φ̃

>
Φ̃)−1Φ̃

>︸ ︷︷ ︸
decompose to ΦΦ> and ΦΦ>1=0

)
ΩN

=
1

κN
(ΩN −ΦΦ>). (20)

Through the above equation, the matrix-vector product for
K(2) can be computed efficiently in the complexity of
O(NRK2) (RK2 is set to 640 in the experiments). The pair-
wise potentials are not necessarily submodular, because en-
tries of K(2) may be negative. Note that the matrix-vector
product for K(2) cannot be performed by the filter-based
method of [11], because K(2) may not be a Gaussian ker-
nel.

Experiments Three groups of images are selected from
the MSRC dataset for image co-segmentation. Besides our
approach and mean field, the SDP-based algorithms in [36]
(denoted as SDLR) and [16] (denoted as SDCut) are also
evaluated. Our method and mean field are evaluated at the
original pixel level, while SDLR and SDCut are evaluated
only on superpixels.

The code for SDLR and SDCut is provided by authors of
the original papers. The default settings are used. The itera-
tion limit for mean field is set to 100. To prevent mean field
from converging to undesirable local optima, we randomly
run the method 5 times. All experiments are conducted on
a single CPU with 20GB memory. The intersection-over-
union accuracy is used to measure the segmentation perfor-
mance.

From the results illustrated in Fig. 1, we see that our ap-
proach achieves much more accurate co-segmentation re-
sults than both SDLR and SDCut. The performance of
mean field is also worse than ours.

Table 3 demonstrates the number of variables and com-
putational time for each method. The variable numbers
of the problems solved by our method and mean field are
around 100 times larger than those for SDLR and SDCut.
Our approach is slightly faster than mean field, and signifi-
cantly more scalable than SDLR and SDCut.

The quantitative performance is shown in Table 4. Our
approach achieves significantly better co-segmentation ac-
curacy than all the other methods. As for energy minimiza-
tion, our approach also produces lower energies than mean
field. Empirically, we found mean field is sensitive to ini-
tialization. Take “tree” as example, the difference is 5.3·104

between the best and worst energy in the 5 repeats of mean
field with random initializations. If we repeat mean field
100 times, the best energy improves from −2.03 · 105 to
−2.08 · 105, but still worse than ours (− 2.23 · 105).

Figure 2 shows the change of rank((C(u(k)))+) and
Ẽ(y(k)) w.r.t. iteration k. Both of the rank and energy drops



Original images Ground truth LR-SDCut MF+Nys. SDLR SDCut

Figure 1: Qualitative results for image co-segmentation. Three classes of objects from MSRC datasets are used for the evaluation. Our approach and Mean
Field (MF+Nys.) are performed on the original pixel-level images. Because SDLR [36] and SDCut [36] cannot scale up to pixel-level images, they are
evaluated on superpixels. Our method performs best visually. We randomly repeat mean field approximation 5 times for each dataset and select the best
result. Mean field is not stable at this task and sometimes converges to an undesirable local optimal point (see “tree” for example). SDLR and SDCut achieve
worse results than our’s, since some image details are lost due to the use of superpixels.

quickly in the first several iterations. Simultaneously, the
lower-bound of the optimal energy Ẽ(y) (i.e. the dual ob-
jective value) increases from −8.09 · 107 to −4.36 · 105.

6. Conclusions

In this paper, we have proposed an efficient, general
method for solving fully-connected CRFs. The proposed
SDP approach is more stable and accurate than mean field
approximation, which is also more scalable than previous
SDP methods. The use of low-rank approximation of the
kernel matrix to perform matrix-vector products makes our
approach even more efficient and applicable for any sym-

metric positive semidefinite kernel. In contrast, previous
filter-based methods assume pairwise potentials to be based
on a Gaussian or generalized RBF kernel. The computa-
tional complexity of our approach is linear in the number of
CRF variables. The experiments on image co-segmentation
validate that our approach can be applied to more general
problems than previous methods.

As for future works, the proposed method can be par-
allelized to achieve even faster speed. The core of our
method is quasi-Newton (or gradient descent) and eigen-
decomposition, both of which can be parallelized on GPUs.
Matrix-vector products, the main computational cost, can
be implemented using CUDA function “cublasSgemm”.
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