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Abstract

Photographs taken through glass windows often contain
both the desired scene and undesired reflections. Separating
the reflection and transmission layers is an important but
ill-posed problem that has both aesthetic and practical appli-
cations. In this work, we introduce the use of ghosting cues
that exploit asymmetry between the layers, thereby helping
to reduce the ill-posedness of the problem. These cues arise
from shifted double reflections of the reflected scene off the
glass surface. In double-pane windows, each pane reflects
shifted and attenuated versions of objects on the same side
of the glass as the camera. For single-pane windows, ghost-
ing cues arise from shifted reflections on the two surfaces
of the glass pane. Even though the ghosting is sometimes
barely perceptible by humans, we can still exploit the cue
for layer separation. In this work, we model the ghosted
reflection using a double-impulse convolution kernel, and
automatically estimate the spatial separation and relative at-
tenuation of the ghosted reflection components. To separate
the layers, we propose an algorithm that uses a Gaussian
Mixture Model for regularization. Our method is automatic
and requires only a single input image. We demonstrate that
our approach removes a large fraction of reflections on both
synthetic and real-world inputs.

1. Introduction
When taking photographs through windows or glass

panes, reflections of the scene on the same side of the glass
as the camera often ruin the picture. To minimize reflec-
tion artifacts, one may try to change camera position, use
polarizers, or put a piece of dark cloth around the camera,
but often it is impractical to make any of these adjustments.
This raises the need for post-processing to remove reflec-
tion artifacts. Separating transmission T and reflection R
is an ill-posed problem, since both T and R are natural im-

∗Part of this work was done while the author was a postdoctoral as-
sociate at MIT CSAIL. Supplemental material, code and data is avail-
able at: https://dilipkay.wordpress.com/reflection_
ghosting.
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Figure 1: Our method removes undesired reflections in an
image taken through a glass pane: (a) Input image with
reflection artifacts; (b) Close-up shows ghosting on the re-
flection layer; (c) Recovered transmission layer using our al-
gorithm; (d) Recovered reflection layer. Our method exploits
the ghosting cues (seen in (b)) to overcome the ill-posedness
of the layer separation problem.

ages with similar characteristics, and traditional imaging
models assume that T and R play symmetric roles when
forming the input I , i.e., I = T + R. Most previous work
tackles the ill-posedness through the use of multiple input
images [3, 10, 19, 26, 28, 29, 31, 32] or through user in-
puts which mark regions of the observed image as belonging
either to T or R (see [21]).

In this paper, we address the reflection removal problem
using “ghosting” effects – multiple reflections on glasses in
the captured image. A common example is a double-pane
window, which consists of two thin glass panes separated
by some distance for insulation [1]. The glass pane at the
inner side (closer to the camera) generates the first reflection,
and the outer side generates the second, which is a shifted
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and attenuated version of the first reflection. The distance
between the two reflections depends on the space between
the two panes.

In single-pane windows of typical thickness 3-10mm,
ghosting arises from multiple reflections by the near and far
surfaces of the glass (see Figure 3 and Section 3). We have
calculated that1, for a modern SLR and standard 50mm lens
placed 30cm (1 foot) or less from the glass, ghosting of more
than 4 pixels occurs if the camera is at angle of more than
10 degrees and reflected objects are less than 6m away. We
include a video in the supplementary material to visualize
ghosting with glass panes of varying thickness and camera
viewpoints.

To quantify the frequency of ghosting, we analyzed im-
ages returned by Google’s Image Search. We used the key-
words “window reflection photography problems” and “re-
flections on windows.” After removing irrelevant results
such as cartoon images and water reflection, we examined
197 randomly sampled images, and observe 96 of them ex-
hibit significant ghosting (49%). Some examples are shown
in the supplemental materials.

Ghosting provides a critical cue to separate the reflec-
tion and transmission layers, since it breaks the symmetry
between the two layers. We model the ghosting as convo-
lution of the reflection layer R with a kernel k. Then the
observed image I can be modeled as an additive mixture of
the ghosted reflection and transmission layers by R and T
respectively:

I = T +R⊗ k (1)

Following the work in Diamant et al. [9], we model the
kernel k as a two-pulse kernel, parameterized by the distance
and the relative intensity between the primary and secondary
reflections. As we show later, higher-order reflections carry
minimal energy and can be ignored. Given the input image
I , our goal is to recover the kernel k, transmission layer
T , and reflection layer R. Most previous work (with the
exception of [9]), assumed that I = T +R in their imaging
models. Solving this ill-posed problem requires either very
effective image priors, or auxiliary data such as multiple
images captured with motion or polarizers, or user input.
Each of these solutions has drawbacks.

The benefit of using ghosting cues is illustrated with a
toy example in Figure 2. We generate a synthetic example
with a circle as the transmission layer and a rectangle as the
reflection layer. We show the ground truth decomposition,
and two other “extreme” decompositions as pure transmis-
sion and pure reflection. We then measure the likelihoods of
these solutions under the Gaussian Mixture Model (GMM)
of Zoran and Weiss [34]. Intuitively, the ground-truth de-
composition is sparsest, e.g., in the gradient domain, and
therefore the most “natural”. This decomposition has the

1Based on optical simulation described in the appendix. We include the
simulator in the supplemental materials.
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Figure 2: Ghosting cues for layer separation: (a) A syn-
thetic example using a circle and a rectangle as transmission
and reflection respectively. The red arrow points to the ghost-
ing. The log-likelihood of this decomposition under a GMM
model is 3.26×104; (b) A feasible decomposition: the image
is interpreted as only transmission and has log-likelihood
1.81× 104; (c) Another decomposition: the image is inter-
preted as pure reflection with log-likelihood 1.55×104. Both
(b) and (c) introduce additional ghosting compared to the
true decomposition in (a). This results in lower likelihoods
under the GMM model.

highest likelihood of this decomposition (3.26× 104) under
the GMM model. The two extreme decompositions include
ghosting artifacts and are less sparse. They are less natural,
and their likelihoods are lower (1.81× 104 and 1.55× 104,
respectively). In the absence of ghosting, the extreme de-
compositions are both equally probable under the GMM
model.

2. Related Work

The layer separation problem, in the absence of ghost-
ing cues, is ill-posed and requires image priors to reduce
ambiguities. Unfortunately, modern image priors are not
discriminative enough to distinguish the sum of two natural
images from the ground truth images. Thus, most previous
work on layer separation has relied on other mechanisms to
achieve good separation.

A substantial amount of work uses multiple images cap-
tured with different polarizers [19, 29] , or different propor-
tions of layer mixing [26], in which information is trans-
ferred between images to minimize correlation. In [10],
similar ideas are used with two images and Independent
Components Analysis for layer decorrelation. A pair of



images taken with and without a flash is used in [3]; sep-
aration is achieved by exploiting different artifacts in the
flash and non-flash images. Differential focusing is used in
[28] with a pair of images taken, each focused on one layer.
Other works use video as input, exploiting the decorrelation
of motion between the transmission and reflection layers
[11, 12, 15, 20, 24, 27, 31, 32].

Some prior work exploits the statistics of natural im-
ages [22, 23] to enable separation from a single input image.
Specifically, the sparsity of image gradient distributions and
sparsity of corner detectors on an image are utilized. How-
ever, as acknowledged in [22], real-life scenarios with rich
textures are a challenge due to the problems in robustly
detecting corners in such images. To reduce ambiguities,
follow-up work from the same authors requires the use of
sparse user annotations to guide the layer separation process
[21]. To overcome the ill-posedness, recent works exploit
statistical asymmetries between transmission and reflection,
such as considering the case when the reflected scene is
achromatic [17], or when the reflection is blurred relative to
the transmission [25].

Some researchers in psychology and cognitive science
have discovered that local features such as X-junctions are
related to transparency perception [2, 18], and can be used
to separate reflection and transmission layers in simple
scenes [30]. However, as with corner detectors, these cues
are difficult to recover robustly from textured images.

The problem of ghosting has been considered in the ra-
dio communication literature, and deconvolution is used to
remove these artifacts [6]. In image processing, the use of
the ghosting effect for reflection removal was introduced in
[9], and two polarized images were used to achieve layer
separation.

3. Ghosting Formation Model
Our work uses the ghosting model proposed by Diamant

and Schechner [9]. They quantified the ghosting in both the
transmission layer T and reflection layer R. In this work, we
consider a simplified version of their model, involving only
the first-order reflection in R; our model is shown in Figure
3.

We denote light rays transmitted through the glass pane as
transmission T . Light rays from the reflected objects (on the
same side of the glass pane as the camera) first reflect off the
glass pane to give a primal reflection layer, which we denote
by R1. Since the glass is semi-reflective, R1 only contains a
certain fraction of the incident light. The remainder transmits
through the glass and reaches the opposite side. A certain
fraction of this is reflected back towards the camera. This
results in a second reflection denoted byR2. R2 is a spatially
shifted and attenuated image of R1. The superposition of
R1 and R2 gives a ghosted reflection layer R, as shown in
Figures 3(b) and 3(c).

As in [9], we assume that the spatial shift and relative
attenuation between R1 and R2 is spatially invariant. Based
on Fresnel’s equations [14], these assumptions hold when
the reflection layer does not have large depth variations, and
when the angle between camera and glass normal is not too
oblique. In our simplified model, we ignore higher-order
internal reflections of both T and R; these are shown as
dotted arrows in Figure 3(a). For typical glass with refraction
index around 1.5, these higher-order reflections contribute to
less than 1% of the reflected or transmitted energy. Finally,
we assume that the glass is planar.

Under these assumptions (see [9]), the ghosting kernel
k consists of two non-zero values. k is parameterized by
a two-dimensional spatial shift dk and relative attenuation
factor ck. Given an image X , the result of convolving it with
the kernel k gives an output Y , whose value at pixel i is:

Yi = Xi + ckXi−dk (2)

The spatial shift dk is affected by geometric optics and de-
pends on glass thickness, relative positions of the glass, cam-
era, reflected objects, and camera focal length. The attenua-
tion factor ck is affected by wave optics through Fresnel’s
equations, and is dependent on the refractive index of the
glass, the incidental angle of light, and the polarization of
the reflected light rays.

Ghosting effects are more pronounced for thicker glass,
because the image offsets are large, and for large angles
between the camera viewing angle and the glass surface
normal.

4. Layer Separation Algorithm
Our formation model for the observed image I , given the

transmission T , reflection R and ghosting kernel k, is:

I = T +R⊗ k + n (3)

where n is additive i.i.d. Gaussian noise with variance σ2.
We first estimate the ghosting kernel k; details are given in
Section 4.2. Given k, the above formation model leads to a
data (log-likelihood) term for reconstruction of T and R:

L(T,R) =
1

σ2
‖I − T −R⊗ k‖22 (4)

However, minimizing L(T,R) for the unknowns T and R
is ill-posed. Additional priors are needed to regularize the
inference.

We experimented with a number of priors including
sparse functions on the gradients of T and R, based on
natural image statistics. The best-performing prior turned
out to be a recently proposed patch-based prior based on
Gaussian Mixture Models (GMM) [34]. The GMM prior
captures covariance structure and pixel dependencies over
patches of size 8×8, thereby giving superior reconstructions
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Figure 3: Ghosting image formation: (a) Light rays from an object on the same side of the glass as the camera (a soft-drink
can) are partially reflected by the inner-side of the glass, generating the primal reflection R1. The remainder is transmitted,
and partially reflected by the far side of the glass, generating a secondary reflection R2. R2 is a shifted and attenuated version
of R1. The superposition of R1 and R2 leads to the observed ghosted image in (b). Higher-order reflections, denoted by
dashed arrows, are less than 1% of the energy of T and R1 and R2, and can be ignored; (b) The ghosted image captured by
the camera; (c) The inset shows the ghosting effect more clearly.

PSNR: 7.04 dB 13.22 dB 14.01 dB 26.76 dB -
SSIM: 0.4012 0.5267 0.5499 0.9083 -

(a) Synthetic input (b) Sparsity-inducing filters (c) GMM patch prior (d) Non-negativity (e) Ground truth

Figure 4: A synthetically generated example comparing different image regularizers: (a) Synthetically generated input; (b)
Recovered transmission layer using sparsity-inducing gradient filters as regularizers; (c) GMM patch prior significantly
reduces these artifacts; (d) adding non-negativity constraints in the optimization further improves recovered color; (e) ground
truth transmission layer. We show the PSNR and SSIM of the recovered transmissions compared with the ground truth.

to simple gradient-based filters, which assume independence
between filter responses of individual pixels. Following the
formulation in [34], our regularizer seeks to minimize the
following cost:

−
∑
i

log(GMM(PiT ))−
∑
i

log(GMM(PiR)) (5)

where GMM(PiX) =
∑K
j=1 πjN (PiX; 0,Σj). The cost

sums over all overlapping patches PiT in T , and PiR in R;
where Pi is the linear operator that extracts the ith patch
from T or R. We use the pre-trained zero-mean GMM
model from [34] with 200 mixture components, and patch
size 8× 8. The mixture weights are given by {πj}, and the
covariance matrices by {Σj}. In Equation 5, N is a zero-
mean 64-dimensional Gaussian distribution; and PiX is the
patch PiX with mean removed.

Our final cost function combines (4) and (5) for the recov-

ery of T and R, and also includes a non-negativity constraint
for each pixel of T and R:

min
T,R

1
σ2 ‖I − T −R⊗ k‖22 −

∑
i log(GMM(PiT )) (6)

−
∑
i log(GMM(PiR)), s.t. 0 ≤ T,R ≤ 1

The non-negativity constraints on T and R are very useful
in regularizing the low-frequencies [32]. This provides regu-
larization that is complementary to the GMM prior, which
is more useful in regularizing higher frequencies. Please
note that we abuse notation slightly to avoid clutter; the
constraints are per-pixel. For color images, we solve (6)
independently on the red, green and blue channels.

As stated above, we compared GMM priors to sparsity
inducing priors on filter responses, which can be represented



as cost functions of the form
∑
i (|fi ⊗ T |α + |fi ⊗R|α),

where α ≤ 1, and the filter set {fi} includes gradients, Lapla-
cians, and higher-order gradient filters. Figures 4(b) and 4(c)
show that the GMM prior outperforms the sparsity-inducing
filters with improved layer separation and decorrelation. In
Figure 4(b), using filters with small spatial support leads to
longer edges being split between the T and R layers. The
GMM prior alleviates this problem by capturing longer range
relationships over patches.

4.1. Optimization

The cost in (6) is non-convex due to the use of the
GMM prior. We use an optimization scheme based on half-
quadratic regularization [13, 34]. We introduce auxiliary
variables ziT and ziR for each patch PiT and PiR, respec-
tively. We then optimize the the following cost function:

min
T,R,zT ,zR

1

σ2
‖I − T −R⊗ k‖22 (7a)

+
β

2

∑
i

(
‖PiT − ziT ‖2 + ‖PiR− ziR‖2

)
(7b)

−
∑
i

log(GMM(ziT ))−
∑
i

log(GMM(ziR)) (7c)

s.t. 0 ≤ T,R ≤ 1 (7d)

To solve the above auxiliary problem, we use increasing
values of β. We start from β = 200, and increase the value
by a multiple of 2 after each iteration. We run 25 iterations
in all. As β is increased, the values of PiT and ziT are forced
to agree; similarly for the values of PiR and ziR. In all our
experiments, we set σ = 5× 10−3.

For each fixed value of β, we perform alternating mini-
mization. We first fix {ziT } and {ziR} and solve for T and
R. This involves the quadratic subproblems (7a) and (7b)
and the constraints (7d). We solve this sub-problem using
extended L-BFGS [33] to handle box constraints. Since
Pi contains only diagonal elements, and k contains only
two non-zero entries for each pixel, the pixel domain L-
BFGS solver is very efficient. We solve for T and R simul-
taneously by transforming the term ‖I − T − R ⊗ k‖22 to
‖I − AX‖22. Here X vertically concatenates vectors T and
R, i.e., X = [T ;R], and A horizontally concatenates the
identity matrix I and convolution matrix k, i.e. A = [I|k].
We then transform PiT and PiR to corresponding patches
on X , and use constrained L-BFGS to solve for X .

Next, we fix T and R, and update {ziT } for each patch i.
All the {ziT } may be updated in parallel, since each patch
is independent of other patches. We adopt the approximate
optimization suggested by [34]: we first select the compo-
nent with the largest likelihood in the GMM model, and then
perform Weiner filtering using only that component; this is
a simple least squares update. An analogous update is used
for {ziR}.

(a) Input
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Figure 5: Determining ghosting kernel k: (a) Input image
with ghosting; (b) 2-D autocorrelation map of the Laplacian
of the input image. The local maximum pointed to by the
white arrow corresponds to the displacement dk, which is
at an offset of (13, 5) pixels. Using this spatial offset, the
attenuation factor ck is computed. See text for details.

A good initialization is crucial in achieving better local
minima. We initialize the GMM-based model with a sparsity-
inducing based model, with a convex L1 prior penalty:

min
T,R

1
σ2 ‖I − T −R⊗ k‖22 (8)

+
∑
j ‖fj ⊗ T‖1 +

∑
j ‖fj ⊗R‖1

The L1 optimization can be efficiently performed using
ADMM [4]. We use a set of sparsity inducing filters {fi}
that include gradients and Laplacians. Details of the ADMM
optimization are provided in the supplemental material.

4.2. Estimating k

Here we explain the estimation of ghosting convolution
kernel k, which is parameterized by a spatial shift vector
dk and an attenuation factor ck. We use some ideas from
[9] for the estimation. We first estimate dk using the 2-D
autocorrelation map of ∇2I , which is the Laplacian of the
input image I . Figure 5 shows an example ghosted image
and the autocorrelation map of the Laplacian over a range of
spatial shifts. The shifted copies of the reflection layer create
a local maximum at dk on the autocorrelation map. To detect
dk, we apply a local maximum filter in each 5-by-5 neigh-
borhood. For robust estimation, we discard local maxima in
neighborhoods where the first and second maxima are closer
than a pre-defined threshold. This removes incorrect max-
ima that are caused due to locally flat or repetitive structures.
We also remove local maxima within 4 pixels of the origin.
Finally, of the remaining local maxima, we select the largest
one as the ghosting distance dk. There is an ambiguity on
the sign of dk, and we resolve this by choosing dk such that
ck < 1, using the property that the second reflection has
lower energy than the first.

The estimation of the attenuation factor ck uses the shift
dk. We first detect a set of interest points from the input
using a Harris corner detector. For most corner features
within the image, we found that the gradients of a local
patch are dominated by the gradients of either R1, R2 or



T . Around each corner feature, we extract a 5× 5 contrast-
normalized patch. For patches that have a strong correlation
with a patch at spatial offset dk, we assume that the edges
are due to either reflection layer R1 or R2. We then estimate
the attenuation between a pair of matching patches pi, pj as

the ratio aij =
√

var[pi]
var[pj ]

, where var[pi] is the variance of the
pixels in patch pi, and we choose the order of (i, j) such
that aij < 1. Finally, we sum over all such pairs to give an
estimate of ck:

ck =
1

Z

∑
ij

wijaij (9)

where Z =
∑
ij wij is the normalization factor, wij =

e−
‖pi−pj‖

2

2θ2 , θ = 0.2.
While the above method for estimation of k has proven

to be robust in our experiments, it can fail on images with
strong globally repetitive texture.

5. Results

We evaluate our algorithm on both synthetic and real-
world inputs, demonstrating how ghosting cues help in the
recovery of transmission and reflection layers. We also
demonstrate potential applications of our algorithm, includ-
ing image classification on the recovered transmissions and
automated de-ghosting for product photography.

We start by testing on synthetic data from the MIT-Adobe
FiveK dataset [5]. We synthesize 20 inputs from 40 randomly
sampled images for T andR, attenuation ck between 0.5 and
1.0, and ghosting distance dk between 4 to 40 pixels. On
average, our method achieves an SSIM of 0.84 and PSNR of
23.2 dB for the transmission layer. An example is shown in
Figure 4.

Figures 1 and 6 show the results of reflection removal
on real-world inputs. All the images are taken between 0.3
to 1 meter away from the window, and the angles between
camera and glass range from 10 to 35 degrees. The glass
thicknesses are between 4 and 12mm. Note how, in Figure 1,
the fruit and the text are recovered in separate layers.

In Figure 7, we compare our method to other reflection
removal algorithms that take a single input image. The input
shows an image of a building facade and a fire escape, and it
contains reflections of the photographer and camera, which
are clearly seen in the reflection layer recovered by our algo-
rithm. The second column shows the results of [21], which
requires user annotations. Our manual annotations (for the
algorithm of [21]) are shown in the inset. Red points label
reflection gradients, and blue points label transmission gra-
dients. The third column shows the results of Li and Brown
[25]. Their method assumes that the reflection layer is blurry,
and therefore cannot handle natural reflection components

Input Recovered Transmission

Figure 6: Results on real-world inputs. We show only the
recovered transmission layers.

such as the camera logo. We used implementations from the
authors’ web sites.

Next, we test image classification performance on recov-
ered transmission layers. An application of this could be in
automated driver assistance systems with dashboard cameras
for object detection. The input image to the camera could be
affected by reflection from the windshield. We use a convo-
lutional neural network (CNN) and the pre-trained ImageNet
model over 1000 classes provided in Caffe [16].

The test data is prepared by randomly sampling 20,000
images from the test set in ImageNet [7]. We then draw
10,000 pairs from these images; each pair has an associated
transmission and reflection image. We mix each pair to gen-
erate 10,000 images; the ghosting kernel k is generated with
a random attenuation ck between 0.5 and 1, and random
shift dk generated by sampling a shift between -20 to 20
pixels in both the x and y directions. Table 1 compares clas-

Input
Recovered

Transmission
Ground Truth
Transmission

Top-1 23.6 % 40.1% 60.5 %
Top-3 36.9 % 58.2% 77.3 %
Top-5 42.4 % 63.9% 82.2 %

Table 1: Label prediction accuracy on 10,000 synthetically
generated inputs. We show the Top-1, Top-3 and Top-5
accuracy on the input, recovered transmission and ground
truth transmission layers. The recovered transmission layer
has significantly improved accuracy.



Top: transmission layers!
Bottom: reflection layers!

Input!

Levin et al. 2007! Li and Brown  2014! Our method!

Figure 7: We compare our result to two other methods on single image reflection removal. The input is a facade and a escape
stair, containing reflections of a camera and the photographer. Our method successfully separates the camera reflection. Levin
et al. [2007] requires user annotations, which is created by us and shown in the inset.

sification rates on the input ghosted images, the recovered
transmission layer and the ground truth. We see that the re-
covered transmission layers provide significantly improved
classification compared to classifying on the input images.
In Figure 8, we show examples of labels predicted by the
CNN.

Figure 9 shows an application of our algorithm for auto-
matic de-ghosting. In product photography, the product is
often placed on a reflective surface for aesthetic reasons. An
example of the resulting image is shown in Figure 9(a). We
use our method to decompose the input into the transmission
and the reflection layers, and then additively remix them to
create the ghosting-free result, shown in Figure 9(b). Our un-
optimized MATLAB implementation takes 22 minutes on
24 CPUs to process an input RGB image of size 400× 600.

6. Discussion

We have introduced a new algorithm to exploit ghost-
ing cues for layer separation in images taken through glass
windows. We show under what conditions this ghost is visi-
ble, and present an algorithm which uses patch-based GMM
priors to achieve high-quality separation of reflection and
transmission images on real-world and synthetic data. Our
method is currently limited to spatially-invariant ghosting
kernels. Kernels can vary spatially when the reflected scene
contains a wide range of depths [8], for very wide angle
views, or when the polarization of the reflected light varies
spatially.

When the transmission layer contains double features

Mask Cradle Vestment Mask

Vulture Hound Hound Vulture
Ground Truth
Transmission

Ground Truth
Reflection

Input
Recovered

Transmission

Figure 8: Examples from ImageNet dataset [7]. From left
to right, the columns show the ground truth transmission,
ground truth reflection, the synthetically generated input,
and our recovered transmission layer. The captions below
each image are the labels predicted by a trained CNN [16].
Predicting labels on the image with ghosting gives incorrect
results. Separating the layers prior to classification helps
predict the correct labels.

such as edges separated by exactly the ghosting distance and
relative strength similar to the same factor ck, then deter-
mining layer ownership is problematic. A corresponding
difficulty can occur when the reflection layer contains nega-



(a) Input (b) Automatically de-ghosted output

Figure 9: Automatic de-ghosting: (a) the input shows a watch placed on a mirror surface for product photography. The red
inset shows the ghosting artifacts due to the thickness of the mirror, and the blue inset is a zoom into the de-ghosted reflection
layer; (b) Our automatic method removes the ghosting artifacts.

Figure 10: Illustration of Fresnel’s equations and ghosting
effects.

tively correlated features at the ghosting distance, such as a
positive and a negative edge. We have found that the quality
of our recovered reflections tends to be lower than that of
transmissions, possibly due to the asymmetry in our imaging
model. Ghosting cues break the symmetry between reflec-
tion and transmission but tend to be less effective for low
frequencies. Better low-frequency regularization techniques
would be an interesting research direction.

Appendix: Fresnel’s Equations and Ghostings
We derive ghosting effects from Fresnel’s equations. Con-

sider the setup in Figure 10(a). When a light ray enters from
one media to another media, part of the ray is reflected. The
fraction of the incident power that is reflected from the inter-
face is given by the reflectance rs, given by the following:

rs =

∣∣∣∣∣∣
n1 cos θi−n2

√
1− (n1

n2
sin θi)2

n1 cos θi+n2
√

1− (n1

n2
sin θi)2

∣∣∣∣∣∣
2

(10)

where θi is the incident angle, n1 and n2 are the refractive
indexes for the two media, which are air and glass in our
work. We will use n1 = 1 and n2 = 1.5 in the following,

corresponding to typical values for air and glass. The re-
flectance of the parallel-polarized component, denoted by
rp, is given by:

rp =

∣∣∣∣∣∣
n1
√

1− (n1

n2
sin θi)2−n2 cos θi

n1
√

1− (n1

n2
sin θi)2+n2 cos θi

∣∣∣∣∣∣
2

(11)

If the incident light is unpolarized, which means that it con-
tains equal energy of parallel and perpendicularly polarized
components, then the effective reflectance r is rs+rp

2 . The
transmittance is:

t = 1− r (12)

Now we consider the setup in Figure 10(b), which contains
two interfaces. Considering the incident light with unit en-
ergy, we label the attenuated energy on each reflected light
ray. The attenuation factor c in our kernel, which is the ra-
tio between the secondary and the primary reflection, is t2.
Plugging in Equation 10, Equation 11, and Equation 12, us-
ing θi = 45 degrees, we have t = 0.95, and c = t2 = 0.91.
The ratio between the third and the primary reflection is
t2r2 � c, since usually r � 1. In the above setup, this ratio
is less than 0.01. Under the assumption of unpolarized light,
both t and r are only dependent on the incident angle θi, and
spatially-invariant across the camera imaging plane.
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