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Abstract

Predicting where humans will fixate in a scene has many

practical applications. Biologically-inspired saliency mod-

els decompose visual stimuli into feature maps across mul-

tiple scales, and then integrate different feature channels,

e.g., in a linear, MAX, or MAP. However, to date there is no

universally accepted feature integration mechanism. Here,

we propose a new a data-driven solution: We first build a

“fixation bank” by mining training samples, which main-

tains the association between local patterns of activation,

in 4 feature channels (color, intensity, orientation, motion)

around a given location, and corresponding human fixa-

tion density at that location. During testing, we decompose

feature maps into blobs, extract local activation patterns

around each blob, match those patterns against the fixa-

tion bank by group lasso, and determine weights of blobs

based on reconstruction errors. Our final saliency map is

the weighted sum of all blobs. Our system thus incorporates

some amount of spatial and featural context information

into the location-dependent weighting mechanism. Tested

on two standard data sets (DIEM for training and test, and

CRCNS for test only; total of 23,670 training and 15,793 +

4,505 test frames), our model slightly but significantly out-

performs 7 state-of-the-art saliency models.

1. Introduction

Saliency models have been developed to measure the

likelihood of a location to attract human attention [14]. Typ-

ical computational saliency models employ the following

paradigm: (1) compute individual activation maps in sev-

eral feature channels, (2) combine activation maps into a

master saliency map [14, 8, 33]. Several bottom-up features

including color contrast, intensity, orientation, spatial fre-

quency, and motion, are typically extracted, and they are

then integrated linearly [14], in a MAX [17], or MAP [29]

manner into a master saliency map.

Yet, to date, there is no universally accepted feature in-

tegration mechanism for visual attention allocation; some

physiological and psychophysical studies support linear

feature integration [28, 21], while others [17] have raised

psychophysical arguments against linear summation strate-

gies. Since neural mechanisms underlying visual attention

need further exploration, here we propose a data-driven ap-

proach using human eye-tracking data to learn associations

between patterns of feature responses and human fixations.

Several computational saliency models learn from bio-

logical or behavioral data. Itti and Koch [13] learned feature

map weights that would render some specific objects more

salient, from manual ground-truth annotations around train-

ing exemplars of these objects. Zhao and Koch [33] used

adaboost to learn visual saliency by taking into account fea-

ture selection, weight assignments, and integration in a uni-

fied framework. Kienzle et al [16] directly learned a fixation

model from fixated and non-fixated image patches using

SVM. Judd et al [15] extracted low, middle and high-level

features from images, and used SVM to learn the mapping

from feature to fixations. All these works learn saliency in a

pixel-wise fashion and ignore neighboring-pixel dependen-

cies. Moreover, none of them take into account contextual

information, although Judd et al [15] took advantage of se-

mantic faces. While bottom-up, low-level properties of a

visual scene play a significant role in visual attention, un-

doubtedly high-level factors such as scene context [9] and

search goals [23] are not negligible. Torralba [27] explicitly

model global scene contexts in a visual search task. While

their method improves gaze prediction, the drawback is the

need for sufficient amounts of labelled data to build differ-

ent contextual models for different objects. A more recent

work [24] studied saliency in dynamic scenes and proposed

to use Gaussian blobs on the GBVS [8] saliency map as

fixation candidates. They used random forest regression to

learn transition probabilities between fixation candidates on

contiguous frames to do fixation candidate selection.

Inspired by object bank [19] and action bank [25] for

image and video activity representation, we present fixation

bank to model fixation allocations. We use primitive fea-

tures, including color (C), intensity (I), orientation (O) and

motion (M), extracted from visual stimuli, along with as-

sociated inter-observer (IO) fixation maps obtained from

human eye-tracking data. During training, the feature maps
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Figure 1. Location-dependent weighting: in the case of Linear Regression (LR), every pixel in a feature map receives the same weight

(ωC , ωI , ωO, ωM). In contrast, our algorithm decomposes each map into up to N blobs (see ...... markings) and weights the contribution

of each blob in a location-dependent manner according to the fixation bank. Our final output is a weighted sum of all blobs. Green triangle

indicates the peak location in the human IO map.

are decomposed into local feature patterns and used jointly

with the observer fixation maps to create a fixation bank

B, which associates patterns of feature responses around a

blob with probability of human fixation at that blob’s loca-

tion. The fixation bank is comprised of both positive and

negative pattern configurations (exemplars of feature pat-

terns corresponding to high and low fixation probabilities,

respectively). The fixation bank is used to measure how

likely a future test feature pattern is to attract human fix-

ations. For a test frame, we decompose its feature maps

CIOM into blobs, extract local feature patterns around

each blob, match these patterns agaist the fixation bank by

leveraging group lasso [31], and determine weights of blobs

based on the ratio of reconstruction errors from the posi-

tive and negative exemplars in the fixation bank. The final

saliency map for that frame is the sum of weighted blobs.

Our method bears resemblance with Rudoy et al [24] work;

however, we don’t use any high-level features while our fix-

ation bank built from primitive features still incorporates

some spatial and featural contexts. Our method differs from

work in [14, 15, 33, 16] in the way that we process in units

of blobs, which automatically take neighboring pixel conti-

nuity into account.

Our method is applicable to fixation prediction on both

static images and dynamic video frames. Widely used im-

age saliency data sets include Bruce and Tsotsos[3], Koot-

stra et al[18] and Judd et al[15], which contain 120, 101 and

1003 images respectively. Data set in[15] is the largest static

data set available to date. Since our method is data-driven,

while all static data sets are relatively too small and do not

cover a rich viariety of local feature patterns, in the paper,

we only experiment on dynamic video data sets, which are

much larger than existing static data sets. Specifically, we

use 23,670 video frames to build the fixation bank.

We have several-fold contributions: (1) we propose

the concept of fixation bank to model human fixations.

(2) we introduce a location-dependent weighting strategy,

which outperforms previous location-independent uniform

weighting. (3) we model saliency in units of blobs instead

of pixels, which is more semantically sensible. (4) we ex-

tensively test and validate our new approach on standard

data sets.

2. Methods

Our method contains two major steps: fixation bank

construction and fixation candidates reweighting. Fixation

bank is constructed on training data, maintaining the as-

sociation between local feature patterns and probabilities

of human fixations, and is used to reweight fixation can-

didates on testing frames. The bank contains 4 dictionar-

ies, DF , F ∈ {CIOM}. Each DF is associated with the

corresponding feature channel F , and used to reweight fix-

ation candidates only from F . Dictionary DF consists of 2

blocks, i.e. DF = [DP
F |D

N
F ]. The 1st block DP

F contains

feature patterns contributing to fixations, while the 2nd one

DN
F contains feature patterns less likely to attract attention.

To predict fixation density map of a test frame, we extract

CIOM activation maps, decompose each map into blobs,

extract local feature patterns on each blob, and formulate

reweighting of blobs from F as a group lasso problem with

DF as its design matrix. The master conspicuity map is sum

of reweighted fixation candidates from 4 channels.

2.1. Feature Extraction and InterObserver (IO)
map Generation

Four feature channels are extracted on each frame in-

cluding color (C), intensity (I), orientation (O), and mo-

tion (M). They reflect local center-surround contrasts in

each feature dimension. All of these features are known

to contribute to bottom-up saliency. CIO were computed

as in [14] and M as in [12]. To generate the inter-observer

map for each frame, we convolve an isotropic Gaussian ker-

nel with standard deviation σ, set approximately to the size

of the human fovea, at fixation positions of human sub-

jects on that frame, and then linearly combine these fixa-

tion maps. This combined fixation map is termed as inter-

observer (IO) map (the 2nd row in Fig.3 shows some IO
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Figure 2. Feature map Decomposition: 4 maps in the 1st column are extracted feature maps of a sample frame, the 2nd column shows

fitted Gaussian blobs. In this case, by running decomposition on each Gaussian blob, we end up 13 (3+3+5+2) decomposed feature maps,

8 of which are shown in the bracket. Each block in the bracket shows decomposed feature maps of Gaussian blobs from the same channel

F , F ∈ {CIOM}, e.g. ŜC
1 and ŜC

2 in the 1st block are decomposed feature maps of blobs 1 and 2 from channel C. Each row shows

decayed maps dFb of channel F on different blobs. Take motion channel M decaying w.r.t. blob bC1 from channel C as an example: the

original M and its decayed map dMb are highlighted by red rectangular boxes. dMb is computed following Eq.1. Since bM1 is spatially

further to reference blob bC1 than bM2 , resulting that bM1 is weakened much more than bM2 , which is seen from dMb that location around bM1 is

blacked-out.

maps). IO maps are computed on the raw-sized frames,

afterwards they are subsampled to 20× 15 pixels in our ex-

periments and used as groud-truth.

2.2. Fixation Bank Construction

We build a fixation bank B consisting of 4 feature-

channel associated dictionaries, B = {DC ,DI ,DO,DM}.

Each dictionary contains positive and negative feature pat-

terns, which capture gaze allocation probabilities. Feature

patterns in the dictionary DF are decomposed feature maps

of fixation candidates from feature channel F . We have to

emphasize that: although dictionary DF is associated with

feature-channel F , and only used to reweight fixation can-

didates from F , its feature patterns do contain information

from all 4 channels. Technical details of fixation candidates

and their corresponding decomposed feature maps are given

in the following.

2.2.1 Fixation Candidates Generation

We treat each ℓ1-normalized feature map F as a gaze prob-

ability distribution PF . By sampling sufficient random

points from PF and clustering them using mean-shift, we

obtain KF clusters. Each cluster is approximated by a

Gaussian blob with cluster center as mean and points co-

variance matrix as variance. Finally each blob on feature

map F is treated as a fixation candidate. In the following

text, Gaussian blobs and fixation candidates will be used in-

terchangeably. Gaussian blobs extraction is shown in Fig.1.

The 1st row shows 4 feature maps CIOM, and the 2nd

row shows fitted blobs from each map. Decomposition of a

feature map into blobs makes location-dependent weighting

possible:

By running linear regression between feature and IO
maps, i.e., (C, I,O,M,1) · (ωC , ωI , ωO, ωM, ω1)

T = IO

(ω1accounts for bias), we obtain one weight ωF for one

feature channel F , i.e. all pixels within F receive the

same weight. This location-invariant weighting mecha-

nism is shown to be suboptimal in case of object search in

real scenes [27]. In our work, rather than explicitly build-

ing the object-specific contextual models, we adopt a sim-

ilar location-dependent weighting mechanism by learning

weights for each Gaussian blob.

2.2.2 Feature Map Decomposition

After extracting fixation candidates bk, k ∈ {1, 2, ...,KF}
from feature map F ,F ∈ {CIOM}, we decompose raw

feature maps CIOM according to each blob b on F : let

ŜF
b be the decomposed feature map of blob b, which is

a concatenation of 4 decayed feature maps, i.e., ŜF
b =

[dCb d
I
b dOb dMb ]T with

dfb =

Kf
∑

k=1

ωbk · gk, f ∈ {CIOM} (1)

dfb is the a decayed map of channel f , w.r.t. reference

blob b from channel F , which is sum of Kf decayed blobs

from f . In Eq.1, gk is the kth blob from channel f and

ωbk = exp{− 1

2σ2 ((xb − xk)
2 + (yb − yk)

2)} is its weight

w.r.t. reference blob b, where (xk, yk) and (xb, yb) are im-

age plane coordinates of target blob gk and reference blob

b respectively, and σ controls decaying rate. Weight ωbk

is reversely proportional to the spatial proximity of two

blob centers. The decomposed feature map ŜF
b of reference

blob b is termed as signature of b, which describes local

feature pattern around b, and is used to construct fixation

bank during training and reweight blob b during testing. At

the end, the raw feature maps CIOM are decomposed into
∑

F∈{CIOM} KF signatures ŜF
b , each of which associates
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Figure 3. Fixation Bank: This figure

shows the constructed channel-C dic-

tionary DC from bank B, each column

in DC is a decomposed feature map ŜC

b

of some blob b from channel C. DC

contains positive and negative blocks

DP

C and DN

C , which are further divided

into sub-blocks based on spatial posi-

tions of Gaussian blobs. In the fig-

ure, magenta rectangles and green tri-

angles indicate peak locations of blobs

and IO maps. As seen, two peaks are

close for exemplars from the positive

block DP

C while they are far apart in

DN

C .

with blob b from channel F . All the decomposed feature

maps share the same IO map of that frame. An example of

feature map decomposition is shown in Fig.2.

Feature decomposition decomposes complicated, less

likely repeatable raw feature patterns into basic and more

repeatable elementary feature patterns. This makes the

matching of two raw feature patterns insensitive to their

extra non-overlapping parts. Feature decomposition bears

some similarity with pyramid match kernel, which is robust

to background cluttering [6]. For two frames f1 and f2 with

different raw feature maps but some common decomposed

feature maps, we may infer possible fixation locations on f2
based on known fixations on f1.

2.2.3 Blocked Dictionary Construction

First we define the peak of blob b to be the peak of its de-

composed feature map ŜF
b . The blocked dictionary is built

under the assumption that only when the peak of a decom-

posed feature map is close to (≤ ξ) the peak of IO this de-

composed feature map is a positive configural pattern that

attracts attention, otherwise it is a negative exemplar.

Blocked dictionary has two blocks, keeping positive

configural feature patterns and negative ones respectively.

By designing such blocked dictionary, we could formu-

late Gaussian blobs reweighting as a two-class classification

problem by group lasso. A classification assumption is pro-

posed by Wright [30] in face recognition that if sufficient

training samples are available for a particular class, then it

is possible to sparsely represent any test sample by only us-

ing training samples from the same class. We generalize

this assumption to our setting of Gaussian blobs reweight-

ing. If the decomposed feature map of a blob candidate is

reconstructed well from the positive block, then we believe

that blob attracts attention, and it will be assigned a high

weight; otherwise, it is suppressed in the final conspicuity

map.

One dictionary DF is built for each feature channel

F (F ∈ {CIOM}), without loss of generality, we take

channel-C-associated dictionary DC construction as an ex-

ample.

For a training frame, suppose there are KC Gaussian

blobs bi, i = {1, 2, ...KC} on channel C, let be Ŝbi the de-

composed feature map of bi. If the peak location Pbi of bi
is within some distance ξ to the peak location PIO of IO
map, i.e., ‖Pbi − PIO‖2 ≤ ξ, then Ŝbi is treated as a posi-

tive exemplar and assigned to the 1st block DP
C ; while when

‖Pbi − PIO‖2 ≥ τ, τ > 0 ∧ τ > ξ, it is a negative exem-

plar and assigned to the 2nd block DN
C . This assignment

process iterates over all training frames. Finally, we build a

channel-C-associated dictionary DC , DC = [DP
C | DN

C ]. τ
is a threshold much larger than ξ, in our case, τ = 5, ξ = 2.

In practice, ξ, τ are determined such that we have approx-

imately equal number of negative and positive exemplars

in DC . Blocked dictionary construction for the other three

feature channels follows the same way, and at last we get

four blocked dictionaries,DC ,DI ,DO,DM, constituting a

fixation bank B.

Each blocked dictionary DF has two big blocks, and

we further divide training exemplars in each big block into

smaller blocks by their peak locations. In our case, the

image plane is cut into M × N non-overlapping cells,

each with size s × s. When the peak location of an ex-

emplar falls into cell i, then it is assigned to sub-block

i, i = {1, 2, ...,M × N}. Finally, each blocked dictionary

DF has 2 × M × N blocks, half of them belonging to the

1st positive block and the left belonging to the 2nd negative

block, i.e., DF = [DP1

F | DP2

F · · · | · · · | D
PM×N

F ‖ DN1

F |

DN2

F · · · | · · · | D
NM×N

F ]. Bottom row in Fig.3 shows the

structure of Dc.

2.3. Gaussian Blob Reweighting

For a test frame, after extracting decomposed feature

maps of Gaussian blobs, we formulate reweighting of each

blob as a group lasso problem. The final gaze density map

4



Å
1

M

bM

1

Å
1

I

bI

1

C

I

O

M

Selected Columns from positive block of  D
M 

by group lasso 

§�§�

Selected Columns from negative block of  D
I
 by group lasso

& ����� & �����& ����� & �����& ���� & �����& ����� & �����

{ } }{
Figure 4. Blob Reweighting by Group lasso. We show reweighting of two blobs bM1 and bI1 from channel M and I respectively. The

green triangles on frames indicate peak locations of IO. The first column shows a test frame and its extracted feature maps CIOM. In

the green box, the 1st column is the decomposed feature map ŜM
1 of blob bM1 from motion channel M, by reconstructing it from blocked

motion dictionary DMusing group sparsity constraints, i.e. by solving problem 2, we get a couple of auto-selected exemplars with varying

weights, and we list 4 examplars from the positive block. As we see, the selected positive exemplars have similar featural configurations

to ŜM
1 , and experiments showed that most of the selected exemplars came from the postive block, making blob bM1 have a high weight

when evaluating 3. Similarly, in the red box, we show how blob bI1 from intensity channel I is suppressed. Now ŜI
1 is reconstructed

from intensity dictionary DI by solving 2, and we chose to list 4 selected negative exemplars. Since it’s reconstructed well by negative

exemplars, it’s assigned a small weight and suppressed therefore. Intuitively blob bI1 is far from IO, not attention-attracting, and should

be suppressed, while bM1 overlaps with IO, catches attentions and should be enhanced.

is a weighted sum of all blobs.

A paradigm for multi-class classification using sparsity-

inducing linear regression is introduced in [26]. The ℓ1 reg-

ularized lasso tends to select a single representative sam-

ple from a group of correlated samples and does not pro-

mote the representation of the test sample in terms of all

correlated samples. However decomposed feature maps

from the same sub-block (even from different sub-blocks,

as will be seen) are correlated and to promote the represen-

tation of the query sample with all correlated atoms, we uti-

lize block-norm regularization on the grouped coefficients,

specifically, sum-of-ℓ2-norm of grouped coefficients, and

each group corresponds to one sub-block in the dictionary.

In practice, we use sparse group lasso [4], which promotes

sparsity both at the group level and within the group and

favors selection of correlated samples together.

For each Gaussian blob on feature maps of a test frame,

to calculate its contributing weight to the final saliency map,

we first solve a group lasso problem and then define its

weight as a function of reconstruction errors from the pos-

itive and negative groups. Given a blob b from channel F
with decomposed feature map ŜF

b , we solve the problem:

min
β

{
1

2
‖ DF ·β−ŜF

b ‖2
2
+λ1

G
∑

g=1

Lg ‖ βg ‖2 +λ2 ‖ β ‖1}

(2)

Where βg is the coefficients of gth group, β =
(β1, β2, ..., βG), G = 2 × M × N is the entire coefficient

vector, Lg =
√

|βg|accounts for varying group sizes, and

λ1 and λ2 are controlling parameters making balance be-

tween reconstruction and sparsity. The above problem is a

convex problem with non-smooth regularizer, FISTA algo-

rithm proposed by [1] can efficiently solve it. Intuitively,

if blob b is the one attracting attention, the non-zero coeffi-

cients should mostly come from the the first positive block

and its reconstruction error from the 1st block should be

lower, on the contrary, a blob less likely to attract attention

should be easier to be reconstructed by samples from the

2nd block. We define weight of blob b as the ratio between

negative and positive reconstruction errors:

ωF
b = εN (ŜF

b )/
(

εP (ŜF
b ) + ǫ

)

(3)

where εN (ŜF
b ) =‖ DN

F ·βN − ŜF
b ‖2, εP (ŜF

b ) =‖ DP
F ·

βP − ŜF
b ‖2 and ǫ is a small constant to avoid singularity.

βP and βN are coefficients of positive and negative groups

respectively.

The finally gaze density map Sf of frame f is a weighted

sum of all Gaussian blobs:

Sf =
∑

F∈{CIOM}

KF
∑

k=1

ωF
bk

· gFbk (4)

Where gFbk is the kth Gaussian blob bk from channel F ,

ωF
bk

is its weight defined in Eq.3, and KF is the number of

Gaussian blobs on channel F . In Fig.4, we use a test frame

to show how Gaussian blobs get reweighted, making some

be enhanced and others be suppressed.
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2.4. Data Augmentation and Sharing Atoms

Fixation bank is not translation-invariant yet, since we

have limited training frames. Thus, we augmented the

blocked dictionaries by shifting each decomposed feature

map in 4-directions by at most ζ pixels and also horizontally

flipping it, in our case ζ = 3. This makes our algorithm in-

variant to slight translations. Another problem is that atoms

(decomposed feature maps) from different blocks are not

necessarily uncorrelated, i.e., some atoms from the positive

block are correlated with atoms from the negative block,

although they belong to different classes (positive & nega-

tive). Intuitively, some local feature patterns are ambiguous,

and, sometimes, they contribute to fixation allocation, while

in other occasions, they do not draw attention. Sparse group

lasso tends to choose these atoms together, making recon-

struction errors similar, and in this case the discriminating

power of the system is weakened. To improve prediction

power, we inspect the correlation between selected atoms

from different blocks, if their inner products are greater than

τ(τ = 0.95), their coefficients are ignored.

3. Experimental Validation

3.1. Data sets

We use two public available dynamic saliency data sets:

DIEM [20] and CRCNS [11]. DIEM includes 84 high-

resolution videos from different scene types, such as movie

trailers, TV clips, sports, etc, and each clip lasts 2 mins on

average. It collects eye tracking data from over 250 partic-

ipants, and each clip has on average over 50 participants.

All clips are cropped to a fixed 4/3 width/height ratio from

the center, and then resized into resolution 640×480, in or-

der to keep consistent with the clip resolution from CRCNS

data set.

The CRCNS data set includes 50 video clips, each last-

ing from 6 to 90 seconds. All clips had the same resolu-

tion 640 × 480. The videos contained a mix of indoor and

outdoor scenes including park scenes, crowds, rooftop bars,

TV news, sports, commercials, and video game footage.

The eye tracking data was collected from 3 females and 5

males.

3.2. Data Preparation

The frequency of each clip in both data sets is 30Hz,

and there is much information redundancy between adja-

cent frames. Instead of using all frames for training and

testing, we sample 1 out of 5 sequentially. We use ran-

domly sampled video clips from the DIEM data set as train-

ing data to construct a fixation bank, and test on the remain-

ing DIEM clips. To validate generalization, we test on some

randomly chosen CRCNS clips as well. In the end we use

47 clips from DIEM as training data and test on 27/17 clips

from DIEM/CRCNS. Concretely, there are in total 23,670

training and 15,793/4,505 test frames. For each frame, ex-

tracted feature maps CIOM and kernel smoothed IO map

are down-sampled to 20× 15 pixels.

3.3. Evaluation Metrics

We utilized three universally used saliency metrics: Area

Under ROC Curve (AUC), Normalized scanpath salience

(NSS) [22] and χ2 distances. AUC measures the reliability

that a saliency model can predict locations of interest. Here

we used a shuffled version of it [32], which discounts huge

center-biased models. NSS is the response value at eye fix-

ations on the 0-mean-1-variance normalized estimated gaze

density map. χ2 measures distances between two distribu-

tions, ℓ1 normalized IO map and predicted gaze map. For

AUC and NSS scores, the higher the better, while for χ2

distances, the lower the better.

3.4. Comparison with Linear Regression

Our model assigns location-dependent weights to Gaus-

sian blobs, while linear regression computes one weight for

each feature map. In our case, ideally, Gaussian blobs closer

to IO receive higher weights, while those far apart receive

weaker weights. Our experimental results verify this. Each

test frame has
∑

F∈{CIOM} KF Gaussian blobs, where KF

is the number of blobs on channel-F . We sort these blobs

according to their Euclidean distances to IO of that frame

in a ascending way, and record weights of the first 8 blobs

and put them into a row of the weight matrix ω, in the

end we get a N × 8 matrix ω with N being the number

of test frames. Element ω(i, j) denotes the weight of the

jth closest blob w.r.t. IO on the ith frame. The mean

of weight matrix ω along columns is a 8D weight vector

̟, with the jth entry being the average weight of the jth

closest blobs w.r.t. IO, and ̟ is plotted in the 1st col-

umn of Fig.5. As we can see, the mean weights descend

from the closest blobs to the 8th closest ones in both data

sets, which shows efficacy of our method in reweighting:

enhance the attention-attracting blob candidates while sup-

press attention-irrelevant ones. The middle column of Fig.5

shows number of frames in term of their χ2 distances to

IO maps. The distributions of χ2 distances shift toward

0 after applying our reweighting algorithm. The percent-

ages of frames getting smaller χ2 distances are 70%/68%

in DIEM/CRCNS. The 3rd column in Fig.5 shows clip-

wise AUC comparison. As observed, our algorithm is al-

most consistently better than LR. In some clips, LR yields

slightly better scores than ours, this is because none of the

Gaussian blobs from all 4 channels hit IO, in this case,

LR usually yields spreading gaze density maps while ours
produces peakier ones. In case of non-hits, shuffled AUC

prefers spreading maps to peaky ones.
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Figure 5. Ours Vs. Linear

Regression: the 1st column

shows after blob reweight-

ing, closer blobs w.r.t. IO
got higher weights, while

far apart ones got smaller

weights. The 2nd column

shows the distribution of χ2

distances between predicted

conspicuity maps and IO,

as seen, our algorithm makes

χ2 distances shift toward 0.

The 3rd column shows clip-

wise AUC scores. Our algo-

rithm is almost consistently

better than LR.
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Figure 6. Comparison with other algorithms: our algorithm outperforms others under both metrics, AUC and NSS, in a significant way.

See the text for the significance levels under Wilcoxon signed rank test.

3.5. Comparison with other Saliency Models

We compared our algorithm against three static im-

age saliency models, which rank at the top on previous

benchmarks [2], including: Adaptive Whitening Saliency

model(AWS) [5], Graph-based Visual Saliency(GBVS) [8]

and Judd et al [15], and two video saliency models PQFT

[7] and Hou and Zhang’s model(Hou) [10]. Because of the

usual center bias effect in the data set, we also compared to

the center-placed Gaussian blob model(center), with sigma

of Gaussian blob being σ = 3.

AWS, GBVS, PQFT, Judd and Hou models are applied

on the raw frames with resolution 640 × 480 under their

default parameter settings, and estimated saliency maps are

down-sampled into resolution 20 × 15 for convenience of

comparison. On the DIEM data set, ours performs the best,

obtaining average AUC/NSS scores 0.62/1.38, and on CR-

CNS data set, ours outperforms others as well, with av-

erage AUC/NSS scores be 0.56/1.29 respectively. We plot

AUC and NSS gaps of different algorithms against human

performance in Fig.6. The height of each bar is the mean

gap of that algorithm from human performance, with er-

ror bar showing variance across different clips. The first

two plots show AUC gaps under two data sets, as seen, two

supervised methods, ours and LR, outperform other unsu-

pervised methods. By running ’Wilcoxon signed rank test’

between AUC scores of ours and LR, we get test statis-

tics W = 38/74 and p-values p = 0.0025/0.0059 on

DIEM/CRCNS data sets. The last two plots show NSS

gaps. On DIEM data set, running ’Wilcoxon test’ between

ours and Judd, whose performance is the closest to ours,

gives p = 8.8e−4; and on CRCNS, the significance level be-

tween ours and Center is p = 7.2e−4. The hypothesis test

shows our algorithm outperforms others under both metrics

in a significant way.

In Fig.6, we observed that shuffled AUC scores of GBVS

are low, indicating GBVS model is center-biased. We no-

ticed as well that AWS’s performance under metric AUC

on two data sets are among the top, consistent with results

reported in Borji and Itti’s work [2]. In Fig.7, we visually

show saliency results by different algorithms on DIEM data

set. As observed, other algorithms tend to produce spreaded

gaze density maps while ours generates more peaky results,

making them less suitable for fixation prediction in dynamic

videos.

4. Conclusion

We proposed a new fixation bank approach to predict at-

tention allocations in dynamic scenes. We built this bank

from primitive low-level features, and obtained better per-

formance than other algorithms, which sometimes used

more complex features, on two public data sets. This was

achieved by leveraging the spatial and featural contextual

information implicitly embedded in the bank. Our method

is nonparametric, making it less likely to be affected by de-

7



Stimuli

AWS

GBVS

Hou
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Figure 7. Saliency results on DIEM data set by different algorithms. Frames are chosen from 27 testing clips, with varying scene types,

including sports, news, movies trailers, TV documentaries etc. Green triangles on frames show the peak locations of IO. As we see from

the results, in dynamic videos, each frame usually has one or two fixation locations, while on traditional static images under free viewing,

it’s common for more than 2 locations to pop out as attention-catching. Our algorithm automatically reweights each blob, making one or

two stand out while suppressing others, and finally generating a peaky saliency map. Other static saliency algorithms or dynamic ones

(Hou) tend to produce a spreaded saliency map, making them less suitable for fixation prediction in dynamic videos.

sign parameters. We have shown that our approach outper-

forms the state of the art and transfers well to a completely

different data set.
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