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Abstract

We present a novel view on the indoor visual localiza-

tion problem, where we avoid the use of interest points and

associated descriptors, which are the basic building blocks

of most standard methods. Instead, localization is cast as

an alignment problem of the edges of the query image to a

3D model consisting of line segments. The proposed strat-

egy is effective in low-textured indoor environments and in

very wide baseline setups as it overcomes the dependency

of image descriptors on textures, as well as their limited in-

variance to view point changes. The basic features of our

method, which are prevalent indoors, are line segments. As

we will show, they allow for defining an efficient Cham-

fer distance-based aligning cost, computed through integral

contour images, incorporated into a first-best-search strat-

egy. Experiments confirm the effectiveness of the method in

terms of both, accuracy and computational complexity.

1. Introduction

The visual localization problem stands for estimation of

the 3D location of a query image in a given 3D model

from visual information only. In recent years the localiza-

tion problem has been attracting ever-increasing attention in

the computer vision community. Yet, most of the proposed

methods assume that the 3D model consists of a sparse set

of 3D points associated with their image descriptors. On

the algorithmic level, the localization problem is mostly a

matching challenge, i.e. given 2D point features with their

descriptors extracted from a query image, searching for ten-

tative 2D-3D correspondences such that re-sectioning PnP

algorithms can be applied.

Standard matching procedures based on comparison of

image descriptors across images have a known bottleneck.

The problem is rooted in the limited descriptor invariance to

certain 3D transformations. Most descriptors are invariant

to affine transformations and assume planarity of the sup-
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Figure 1. Top row: Two images in correspondence, however, dif-

ficult to be matched and localized in 3D by standard approaches

based on point features and their local descriptors. Bottom left:

Standard matching with descriptors. Three corresponding patch

pairs, however, due to very different appearance with unmatchable

descriptors. Bottom right: Proposed line segment alignment-based

matching. Line segments in red are those detected in the query, in

blue those projected from the 3Dmodel, and in yellow those which

are mutually matched.

porting image regions from which they are computed. In

practice, these relaxations were shown to be feasible and

many successful techniques solving the localization prob-

lem on large city scale have emerged [18].

Most of the techniques are employed on outdoor scenery,

but application in indoor scenarios typically results in a sig-

nificant performance drop. The reason is that indoor scenes

often exhibit a lot of windows, wiry structures, reflections

and repetitions, as well as limited texture, see Fig. 1. All

this causes standard procedures based on image descriptors

to poorly perform indoors.

In this paper, we introduce a novel proof-of-concept ap-

proach to the indoor localization problem. Aside from ubiq-

uitous interest point + descriptor methods and representing

scenes by 3D point clouds, we build a 3D model consisting
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(a) (b) (c)
Figure 2. 3D model of an indoor scene. (a) Top view on the 3D line model as an output of a line segment-based SfM. (b) Inside view.

(c) Same inside view, but on the 3D point model as an output of a standard point-based SfM. Notice that the point-based 3D model allows

almost no semantic perception compared to the 3D line model, where all the structures nicely pop up.

of 3D line segments, as shown in Fig. 2. This allows the

matching of the query image to the 3D model to be cast as

an alignment problem between two sets of line segments.

This strategy avoids a use of explicit, rather vague, line

descriptors like in [2, 23]. Instead, our method harnesses

geometric information provided by lines, and, despite the

simplicity, copes well with extreme baseline changes that

break other approaches. We show that evaluating alignment

of two line sets in two images can be computed very effi-

ciently with Chamfer matching through the integral contour

strategy. Moreover, the proposed alignment cost allows for

an effective tree-based search strategy to be employed, re-

sulting in low computation time.

Compared to interest point related work, a rather limited

amount of attention has been devoted to the topic of line-

based localization. Despite the prevalence of lines in indoor

scenery, research on lines in context of structure from mo-

tion and visual localization has not yet reached the same

level of maturity as almost two decades of research on in-

terest points has. Unfortunately, line-based methods have

somewhat fallen out of the vision community’s favor and

making up the leeway will take time. We hope that our

work, by showcasing the potential of lines in visual local-

ization, will rekindle the interest in this topic.

2. Related Work

The visual location problem has been widely studied,

mainly from the perspective of 2D-2D or 2D-3D matching.

State-of-the-art approaches like [9, 17, 18, 13, 22] rely on

point features with their associated descriptors. They try to

effectively match a query image to the dataset of images,

given a 3D model as a cloud of 3D points. The large scale

nature of the problem requires techniques like visual words,

kd-based approximated nearest neighbors, co-occurrence

statistics of the image descriptors, etc., to be involved to re-

trieve the most likely matches for the subsequent RANSAC-

based geometry validation step. However, most of the tech-

niques work reasonably only in outdoor scenarios and fare

poorly when dealing with indoor scenes.

Other primitives than point features have been studied

for specific problems, e.g. line segments with their descrip-

tors for two view matching of low texture images [2, 23],

or image contours for object recognition [21, 19, 4, 15].

Intensity edges were shown to be powerful in this context

and significant speed-ups through the integral image con-

cept with Chamfer matching were achieved. Integral im-

ages as intermediate image representations for fast calcula-

tion of region sums were introduced in [24] and for linear

sums along line contour segments in [4]. This concept was

adapted for effective computation of distance transform in-

tegrals for fast directional Chamfer edge matching in [15].

Chamfer matching itself is a well known strategy for mea-

suring distance between contours [1], and has been signif-

icantly enhanced in [21] by encoding edge directions into

the criterion function in order to allow for more accurate

matching.

In this paper we show that indoor scenes can be mod-

eled as a piece-wise wiry structure since they usually ex-

hibit a rich population of line segments. Line segments, as

linear representation of edgels, fit well into contour-based

matching frameworks and we show how the matching cost

can be designed to obtain a highly effective tree-based re-

trieval algorithm. The proposed concept does not replace

point-based localization strategies, but offers a complemen-

tary strategy for scenes where they are insufficient.

Our method has been designed to allow for inconsisten-

cies in detection of line segments across different views. In

practice, it is impossible to guarantee a perfect, repeated de-

tection of the same line segment in different views, because

the endpoints are rather unstable. That is, long line seg-

ments are often broken up into several shorter pieces. This

is for example caused by illumination differences across im-

ages, imperfect radial image undistortion, and occlusions

due to viewpoint changes. Thus, insensitivity of the match-

ing, i.e. the comparison of image line segments to their 3D

model counterparts, to endpoint misalignments and location
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Figure 3. Concept of the localization. Bottom from left: Line segments are detected in the query image and are used to match it to virtual

views by effectively evaluating their mutual alignments. Top right: The best alignment yields 3D pose of the query in the sampled cube

whose edges are shown as black dotted rectangle. The best matches are depicted according to better score as a red, green, blue and cyan

short line with a dot. 3D trajectory of a mapping sequence is shown in red, the ground truth pose of the query as a small black circle.

of the splitting points is very important practical feature.

3. Image localization

We understand visual localization as the process of esti-

mating the position and orientation of a query camera image

in a given 3D model. Here, the 3D model consists of line

segments with no explicit image descriptors. Pose estima-

tion is cast as an alignment problem, see Fig. 3, such that the

projected line segments from the 3D model align with the

edges in the query image. This is achieved by dense sam-

pling of the 3D model, producing so called virtual views.

These virtual views are then compared based on the prox-

imity of their line edges to the line edges of the query im-

age. Edges underlying line segments are shown to facilitate

efficient evaluation of alignment quality, which allows for

a large number of virtual views to be tested. Knowing the

internal calibration of the camera of a query image is ad-

vantageous, but is not necessary.

3.1. Building 3D Model of Line Segments

The key component of the proposed localization frame-

work is the representation of the scene by a reconstructed

set of 3D line segments, as shown in Fig. 2. Numer-

ous techniques for building such 3D models from a se-

quence of images taken by a calibrated camera exist. There

are basically two groups of methods. First, techniques

which simultaneously reconstruct line segments and cam-

era poses [5, 20, 7, 16]. Second, techniques utilizing point

features for estimating the poses of the camera followed by

a guided line segment reconstruction [25, 10, 8].

In our work, we use the technique of [16] belonging to

the first group. Preliminary experiments in different in-

door environments showed us that there are usually enough

point features for incremental pose estimation when a wide-

angle lens and small baselines are employed. However, for

scene representation the points are insufficient as the re-

constructed set of 3D points is rather sparse. Employing

a guided line segment reconstruction given the poses pro-

vides a rich and versatile scene representation which, as we

will demonstrate, serves as a base for our novel localization
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Figure 4. Sampled directions for integral contour computation. Color is used to make the directions visible and to show no holes in the

rasterization of the direction.
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Figure 5. Discretization of the sampled directions.

strategy.

3.2. Virtual Cameras

Given the 3D model consisting of line segments, we

sample the space of possible locations and orientations of

the query image. At each sampled location and orienta-

tion we project the line segments into the virtual view, as

shown in Fig. 3. We assume that the coordinate system of

the 3D model is metric and has one axis perpendicular to

the ground plane. This allows to create slices of sampled

planes and to restrict the amount of sample positions.

We sample the location in each slice in steps of 30 cm,

and orientation in pan, tilt and roll angle in steps 10 de-

grees. Projections indexed by tilt, roll, and focal length are

stored separately. A priori knowledge of any of the angles

or the focal length allows to significantly reduce the compu-

tational burden. Moreover, in the retrieval stage, this hash

table strategy directly reads only virtual cameras with the

closest tilt, roll, and focal length to the query image, and

brings efficient memory management.

3.3. Matching by Alignment

Matching by alignment solves the following problem.

Given a pair of images containing line segments, evaluate

the cost of aligning one set of line segments with the sec-

ond set. This yields a quadratic complexity as each line

from one set needs to be compared to all lines in the sec-

ond set. Now, query image needs to be compared to all

virtual views whose number might reach 100k. Exact near-
est neighbor search is simply prohibitive, even when some

hash table speed-up strategies are involved. Furthermore,

preliminary experiments indicated that also approximated

nearest neighbor using kd-trees performs poorly.

Instead, we propose to incorporate so called integral con-

tour strategy with use of Chamfer distance for evaluating the

alignment. Chamfer distance [1] measures the discrepancy

of two contours, and in its basic form is defined as the cost

of aligning two edge maps E = {xei}
NE

i=1 and T = {xti}
NT

i=1

as

d(E , T ) =
1

NT

∑

xt∈T

min
xe∈E

‖xe − xt‖. (1)

The min operation in Eq. (1) can be replaced by a look-

up in the distance transform (DT) image IDTE of the edge

map E which can be computed in linear time. To achieve

robustness against noise in edgels, it is a standard practice

to truncate the DT image

d(E , T ) =
1

NT

∑

xt∈T

IDTE(xt, γ), (2)

where γ is a threshold for truncating the DT values, typi-

cally set to about 10 pixels.

A popular extension to basic Chamfer matching is to di-

vide the edge map and the template into discrete orientation

channels θi and sum the individual Chamfer scores, as done

in context of hand detection in [21]. In our work, we re-

lax the edge maps to line segment maps. Edgels in E are

split into piece-wise linear segments, using standard line de-

tection algorithms, e.g. we found the one described in [3]

suitable. We consider 16 discrete orientation channels, 0,
14, 26.6, . . . , 166◦, and assign to each edgel the discrete

orientation closest to the orientation of the fitted line seg-

ment. The values for discrete orientations come from the

rasterization of scan-lines in the image, as shown in Fig. 4

and in Fig. 5 such that the scan lines fully span the image

without holes. We compute sixteen DT images IθiDTE on fil-

tered binary images. A filtered binary image is an image

composed of edgels from the original edge map E whose

assigned discrete orientations are θi .
The sum operation in Eq. (2) is expensive, considering

the number of edgel pixels. We therefore adopt the concept

of integral contours. An integral contour image sums pixels

along a respective scan line, as shown in Fig. 4 and in Fig. 5.

To compute it off-line, it needs one pass through the query

image. By this we produce so called integral distance trans-

form (IDT) images IθiIDTE , analogously to [15]. Evaluating

the sum for one line segment becomes now O(1), i.e. just
two arithmetic operations, see Eq. (4). Instead of summing



along hundreds of pixels of the edgels one just looks up into

the IθiIDTE at the endpoints of the line segment and divides by

its length. This yields a significant saving in computations,

resulting in a dramatic speed-up during the matching.

For the template map T , in our case corresponding to a

virtual view, we split the projected lines of the 3D model

into smaller ones and snap them into the discrete orienta-

tions, as shown in Fig. 6. The splitting into the smaller line

segments is controlled by requiring a sufficiently accurate

rasterized representation of the original line segment. The

template map becomes a map of line segments expressed by

starting and end points of the line segment, T l = {li}
N

T l

i=1 ,

where li = [xs
i
;xe

i
] is a four element vector with two x, y

coordinates. The distance of the two edge maps can be then

finally evaluated as

d(E , T ) =
1

NT l

∑

l∈T l

d(E , l). (3)

with

d(E , l) =
(

I
θ(l)
IDTE(x

e, γ)− I
θ(l)
IDTE(x

s, γ)
)

/llen. (4)

The function θ(l) assigns a discrete orientation to a line seg-
ment l as its closest snapping orientation. Length of the line

is denoted as llen and is calculated as ‖xe − x
s‖2.

The matching is commonly cast as searching for the tem-

plate T from the set of templates Tset which minimizes the

distance d as

T ∗ = arg min
T ∈Tset

d(E , T ).

We propose to use different strategy where the best tem-

plate is chosen as

T ∗ = arg max
T ∈Tset

c(E , T ). (5)

with

c(E , T ) =
1

NT l

∑

l∈T l

δ
(

d(E , l) < γ
)

, (6)

where δ(d(E , l) < γ) is a binary function returning 1 if

the inequality is fulfilled, 0 otherwise. NT l is the number

of line segments in the template map T l. The threshold

γ controls the width of the strip around the line in which a

matching line can lie, set to 10 pixels in all our experiments.

In words, the matching cost in Eq. (6) selects the template

map which has the highest number of matching lines. The

same counting strategy is commonly utilized in RANSAC-

based estimation procedures across different CV tasks. As

we further show, this form of the matching cost allows to

use a very effective tree-based search. The cost c(E , T ) gets
values in the 〈0 1〉 interval, with 0 meaning that none of

the line segments matches, 1 that all line segments match,

respectively.

Figure 6. Snapping and splitting lines of virtual views to the 16

sampled directions. Red lines are the projected 3D lines. Blue

lines are the snapped and split approximated lines further used for

alignment calculations. Left: A virtual view. Right: A zoom.

3.4. Search Optimization

The form of the cost function in Eq. (6) facilitates a best-

first search strategy, used e.g. in A∗ algorithm. It allows to

reach the maximum without evaluating all the summands of

the sum operation. In experiments we found that to retrieve

the 1-best candidate template map, only 50% of all calcula-

tions are needed to be compared to the fully evaluated sum.

The implementation of the search procedure is given in

Algorithm 1. In principle, all template maps (virtual views)

are proposed to be processed simultaneously, each line after

the other, switching between the template maps, depending

on the actual upper bound of the cost

c̄(E , T1:i) =
NT l − i+ i ∗ c(E , T1:i)

NT l

, (7)

where T1:i stands for the template map with the first ith line
segments. Eq. (7) reflects the best case cost if all remaining

line segments match. The best-first search of Algorithm 1

can be efficiently realized using a priority queue which e.g.

is a standard container adaptor of C++. We retrieve the 10
best matches in all our experiments, which results on aver-

age in 60% evaluations of all line segments.

3.5. Search Reduction

The search for the best aligning virtual view to the query

can be reduced by extracting additional information from

the query image. For example, the tilt and roll angle of

the query camera can be estimated from a vertical vanish-

ing point. The vertical vanishing point corresponds to the

direction of gravity and can be reliably detected, indepen-

dent from the location in a building. We do not consider

approaches assuming three orthogonal vanishing points, the

so called Manhattan world assumption, where a full rotation

in the global coordinate system can be estimated. In mod-

ern buildings, the horizontal vanishing directions often do

not fulfill the Manhattan world assumption, and therefore it

is not safe to rely on them.

We use the strategy for estimating the vertical vanishing

point and the radial distortion from [27]. It allows us to di-

rectly fix the roll and tilt angle and compare the query image



Figure 7. Some of the testing query images taken with a mobile phone camera.

Algorithm 1 Search for the K best alignments to a query

1: detect line segments in query, giving a set E
2: compute integral contour images IθIDTE at 16 orienta-

tions of θ
3: set upper bounds c̄(E , T )← 1 for all virtual views T ∈
Tset

4: set counters of processed lines iT ← 1 for all T
5: set counter of number of best matches k ← 0
6: push c̄(E , T ) of all T into the priority queue

7: repeat

8: pop T from the priority queue with highest c̄(E , T )
9: evaluate iT th line by scoring c̄(E , T1:iT ) in Eq. (7)
10: iT ← iT + 1
11: if iT = NT l then

12: k ← k + 1
13: else

14: push c̄(E , T1:iT ) into the priority queue

15: until k = K
16: K best matches found

against the virtual views with the closest of the two angles.

The tilt and roll angle can be alternatively obtained from the

Inertial Measurement Unit (IMU) which is a common part

of mobile phones or smart cameras nowadays.

The same strategy can be applied for the focal length

which can be estimated from at least two perpendicular van-

ishing points or is simply known [6, 26]. After fixing the

roll and tilt angles, the focal length, and the radial distortion,

the remaining pan angle and the location are the subjects to

be estimated.

4. Experiments

Most of the datasets which are used for evaluation of vi-

sual localization algorithms are from outdoor large scale

city [9, 17, 18, 13] or well textured indoor lab environ-

ments [14]. In this paper we tackle poorly textured indoor

environments and are primarily interested in localization ac-

curacy under 1m. To be able to judge the results in sense of

such accuracy we created our own dataset from indoors with

50 images and laboriously created Ground Truth.

We chose an entrance foyer of a modern building 20m

long and 10m wide with many glass walls, repetitive struc-

tures, reflective tiles as a representative difficult scene,

shown in Fig. 7. For accurate 3D modeling of the scene,

we used a camera equipped with a 180 degree field of view

fisheye lens and made a loop closed trajectory with 200 im-

ages. We applied standard point- and our line-based Struc-

ture from Motion pipeline of [16]. We obtained a 3D cloud

of points and line segments, respectively, shown in Fig. 2.

For establishing Ground Truth of a query image we manu-

ally established correspondences between the query and the

moving sequence which is used for SfM estimate. We ap-

plied the P3P re-sectioning algorithm of [12] to estimate full

pose of the camera, followed by a bundle adjustment.

Mobile camera We used a mobile phone camera with

known internal calibration to acquire 50 test images with

VGA resolution. The time between the acquisition of the

3D model and the images of a mobile phone was roughly

two years. This makes the localization harder because of

some changes in the environment and different lighting con-

ditions.

The scene is split into three sectors and sampled as three

slightly overlapping 3D blocks. The 3D block consists

of three parallel 10m x 6m rectangles sampled with 30cm

grid, one of them shown in Fig. 3, at three different heights,

shifted by 30cm. At each sampled location the virtual cam-

era orbits with the pan angle of 10 degs. This results in

70k virtual views, as depicted in Fig. 3. Some of the query

images are shown in Fig. 7.

We compared our approach to two other approaches, i.e.

a naive point-based approach and to [18]. The slow naive

approach takes a query and finds the best match via match-

ing it to all dataset images consecutively, validated through

a RANSAC-based estimation with the P3P re-sectioning al-

gorithm of [12]. The approach of [18] is a sped up version

of the naive approach to handle large scale problems. It is

mainly suited for large outdoor datasets where the speed of

inference is of concern. To make the approach effective in-



Figure 8. Query images with the best aligned virtual views. In red

are depicted the lines of the query image, in blue the lines of the

best matching virtual view. In yellow are the matching lines. The

images are best seen in color.

door we learned new vocabulary trees from indoor datasets.

As can be seen from the distribution of pose errors

in Fig. 9, within an accuracy of 1 meter only 27 cameras out
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Figure 9. Distribution of the error in camera centers for the point-

based naive (top) and of Sattler et al. [18] (middle) method. Our

line-based is shown at the bottom. Those images which cannot be

localized or are localized with error greater than 3 m, are all put

into the bucket of 3 m.

of 50 can be localized with the naive point-based approach

and 12 with the approach of [18]. Our line-based approach

outperforms both with 41 successfully localized cameras.

The peak of the histogram for the proposed method is more

to the left with majority of the estimated poses within 30

cm. For the point-based naive method, the peak is around

60 cm and the distribution is more flat. For the point-

based method of [18], the peak is around 1 meter. The

proposed line-based approach clearly outperforms the two

point-based counterparts. Some of the successful align-

ments are depicted in Fig. 8.

Surveillance cameras We applied the proposed method

to surveillance cameras installed in the building at the

height of roughly 5 meters from the ground plane. The



cameras were internally calibrated by the automatic method

of [27] using vanishing points. This experiment emphasizes

the strength of the proposed method. The surveillance cam-

eras look at the scene from very different viewpoints com-

pared to the moving camera which was used for building

the 3D model. The change in viewpoint exceeds the limits

of invariance of image descriptors. As a result none of the

cameras can be localized with the point features and their

descriptors with the naive approach and with the approach

described in [18].

On the contrary, the proposed localization succeeded

even under such difficult conditions, demonstrating the ad-

vantage of the descriptor free concept. Fig. 10 shows three

surveillance cameras with the best aligning virtual cameras.

As can be seen, the fully automatically estimated poses all

lie around the position which was achieved from manually

established correspondences and the P4P re-sectioning al-

gorithm of [11]. Virtual cameras were sampled in a block 4

x 4 x 2 meters around rough positions of the cameras.

Calibration of non-overlapping cameras w.r.t. to a given

3D model is of great importance for surveillance applica-

tions. However, it is still very challenging due to the nature

of indoor environments and the large baseline differences

when matching the images of surveillance cameras to a 3D

model. The proposed method can fill the gap here as the pre-

sented descriptor free localization method can handle much

wider baselines and successfully cope with strong illumi-

nation changes. Moreover, in such an application scenario,

there is typically no requirement on real time processing

and the rough locations of the cameras are known which is

in favor of the presented method.

Performance We implemented the localization Algo-

rithm 1 in C++, resulting in the following performance

statistics. To find 10 best matches takes 0.1 sec on 5k vir-

tual cameras and 1.5 sec on 60k virtual cameras with, in

average, 300 lines per virtual camera, on Intel Core i7 CPU

970@3.2GHz. Computation and storing the virtual views is

done off-line. In many application scenarios a priori knowl-

edge about camera’s approximate location can be safely as-

sumed (e.g. wifi triangulation in smart devices, camera cal-

ibration in surveillance networks) such that pose compu-

tation on a ”room-level” should be sufficient. Or, a robot

moving in a known environment would utilize pose predic-

tions which considerably shrink the search space. A way of

memory saving for price of increasing of the computational

time, is usage of dedicated hardware (GPUs) which would

make on-demand rendering of virtual views possible, i.e.

only the 3D reconstruction needs to be stored.

Considering the computational cost and the scalability,

the presented method surely cannot compete with the state-

of-the-art in point-based methods. This is not surprising as

the research on interest points/descriptors spans well over

1

2 3

Figure 10. Localization of surveillance cameras. Small circles

depict positions estimated from manually established point cor-

respondences. Short lines with dots are the best fifteen (in order

red, green, blue, magenta, yellow, cyan) returned virtual cameras

obtained with the proposed method.

several decades where the community drew heavily from

machine learning and CBIR developments.

5. Conclusion

We presented a novel approach to the indoor visual lo-

calization problem, demonstrating that the adoption of line

segments for indoor scene representation and localization

compares favorably to the state-of-the-art. Line segments

represent richer features than points, which allows for a

matching strategy that fully avoids the need of image de-

scriptors. Our descriptor-free matching handles scenes with

low texture and query images with wider baseline to the

modeling sequence far better than state-of-the-art point-

based methods. Furthermore, we showed that despite the

high number of virtual views, line segments allow for effi-

cient evaluation of the matching cost. This results in an ef-

fective localization strategy, complementing existing point-

based methods.

We hope that the promising results will spark interest

and encourage further investigation of the utility of line seg-

ments in structure from motion and localization. A future

research direction is the unified treatment of lines and points

to produce practical solutions that can overcome the weak-

nesses of the complementary techniques. Furthermore, al-

though we argued for purely descriptor free matching from

a conceptual point of view, we acknowledge that the use of

weak line descriptors to filter out severe mismatches could

contribute towards enhancing the performance.
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