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Learning the underlying kinematic structure of articulated objects is an ac-

tive research topic in computer vision and robotics. RGB-D sensors-based

human/hand skeleton estimation methods have been successfully presented [6,

7], but the methods are designed for specific target skeletons and computa-

tionally demanding pre-training step required. Also the results are typically

skeletons and not kinematic structures. Many algorithms which recover an

articulated structure from 2D tracking data have shown automatic detection

of articulated motion types [2, 9] and building kinematic chains [1, 5, 9],but

they have been applied to relatively simple articulations only. Our target is to

find a kinematic structure of arbitrary objects with highly articulated motion

capabilities. Furthermore, most of the existing kinematic structure gener-

ation methods [1, 9] use motion information only. Such techniques miss

global refinement steps that enforce topological or kinematic constraints,

and as such can produce highly implausible structures. On the other hand,

articulated structure estimation from shape [10] has been presented, but such

estimation method cannot represent kinematic structures.

In this paper, we present a novel framework for complex articulated

kinematic structure estimation from 2D feature points trajectories. We com-

bine motion and skeleton information for generating elaborate and plausi-

ble kinematic structure (see Figure 1). We assume that an articulated ob-

ject is composed of a set of rigid segments and the structure represents the

connections between segments. The 2D feature point set X is defined as

X = {x1,x2, . . . ,xN} where N is the total number of points, and the trajecto-

ries are represented as x
f
i , with f = 1, ...,F as sequence index and F as the

number of frames. To express motion segments, we use Sk for the disjoint

set of points belonging to the kth segment where k = 1, ...,c, and c as the

total number of segments, and yk denotes a centre position of segment Sk

obtained by averaging its points.

It is difficult to estimate the precise number of motion segments (c) es-

pecially when the motions are highly articulated and the input data is noisy.

In order to cope with these complicated cases, we present an iterative fine-

to-coarse inference strategy with randomized voting (RV) method [3], which

adaptively estimates an upper-bound number of initial motion segmentation.

We also propose an adaptive object boundary (δΩ) generation method from

sparse feature points X f based on support vector data description [8] with a

novel optimal kernel parameter selection method using sample margins [4].

A skeleton of an object, ϒ(Ω), is defined as a set of all centre points of

maximal circles contained in an object Ω, which is a medial axis:

ϒ(Ω) = {p ∈ Ω|∃q,r ∈ δΩ,q 6= r : dist(p,q) = dist(p,r)}. (1)

The skeleton contains both shape features and topological structures of the

original objects. Using the obtained object boundary, the distance function

(Ψ(p)) of Ω is defined as Ψ(p) = min
q∈δΩ

(dist(p,q)) for all points p ∈ Ω.

To generate the kinematic structure, we utilise a graphical model G =
(V,E) to determine the topological connections between motion segments.

All the motion segment centres y1, ...,yĉ are treated as nodes V in a complete

graph. The proximity E(yk,yl) between segment yk and yl is defined as

E(yk,yl) = median
f∈F

{(ζ (y
f
k
− y

f
l

;Ψ f )×‖ẏ
f
k
− ẏ

f
l
‖} (2)

which is a combination of geodesic distance in skeleton distance transform

and moving velocity difference. Given the distance function Ψ, a geodesic

distance between two points p and q is defined as follows:

ζ (p,q;Ψ f ) = min
Γ∈Pp,q

l(Γ)

∑
n=1

1

Ψ f (pn)
(3)

This is an extended abstract. The full paper is available at the Computer Vision Foundation

webpage.
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Figure 1: The proposed framework reliably learns the underlying kinematic

structure of complex articulated objects from a combination of motion and

skeleton information.

where Γ is a path connecting the two points and Pp,q is the set of all possible

paths. Thus the Equation (3) defines the minimum distance between two

points in the object region via the skeletal topology path. The proposed

proximity measure separates segments that are topologically apart and move

with different velocity. Two segments with small edge weight have a large

possibility to be connected. We generate the graph’s minimum spanning

tree as the kinematic structure of the object. However, the initially generated

structure is highly contorted, because many small motion segments deviate

from the median axes. So we further perform structure smoothing by an

iterative merging procedure guided by the skeleton distance function.

We introduce new challenging sequences which are composed of highly

articulated and concurrent motions. Our experiments show that the pro-

posed method outperforms state-of-the-art methods quantitatively and qual-

itatively. While previous work needed manual interventions, we could find

plausible motion parts and skeletons adaptively without tuning parameters.
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