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Abstract

Discovering the 3D atomic structure of molecules such
as proteins and viruses is a fundamental research problem
in biology and medicine. Electron Cryomicroscopy (Cryo-
EM) is a promising vision-based technique for structure es-
timation which attempts to reconstruct 3D structures from
2D images. This paper addresses the challenging prob-
lem of 3D reconstruction from 2D Cryo-EM images. A
new framework for estimation is introduced which relies
on modern stochastic optimization techniques to scale to
large datasets. We also introduce a novel technique which
reduces the cost of evaluating the objective function dur-
ing optimization by over five orders or magnitude. The net
result is an approach capable of estimating 3D molecular
structure from large scale datasets in about a day on a sin-
gle workstation.

1. Introduction

Discovering the 3D atomic structure of molecules such
as proteins and viruses is a fundamental research problem
in biology and medicine. The ability to routinely determine
the 3D structure of such molecules would potentially revo-
lutionize the process of drug development and accelerate re-
search into fundamental biological processes. Electron Cry-
omicroscopy (Cryo-EM) is an emerging vision-based ap-
proach to 3D macromolecular structure determination that
is applicable to medium to large-sized molecules in their na-
tive state. This is in contrast to X-ray crystallography which
requires a crystal of the target molecule, which are often im-
possible to grow [32] or nuclear magnetic resonance (NMR)
spectroscopy which is limited to relatively small molecules
[15].

The Cryo-EM reconstruction task is to estimate the 3D
density of a target molecule from a large set of images of the
molecule (called particle images). The problem is similar in
spirit to multi-view scene carving [0, 160] and to large-scale,
uncalibrated multi-view reconstruction [ 1]. Like multi-view
scene carving, the goal is to estimate a dense 3D occupancy
representation of shape from a set of different views, but
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Figure 1: The goal is to reconstruct the 3D structure of a
molecule (right), at nanometer scales, from a large number
of noisy, uncalibrated 2D projections obtained from cryo-
genically frozen samples in an electron microscope (left).

unlike many approaches to scene carving, we do not as-
sume calibrated cameras, since we do not know the relative
3D poses of the molecule in different images. Like uncali-
brated, multi-view reconstruction, we aim to use very large
numbers of uncalibrated views to obtain high fidelity 3D
reconstructions, but the low signal-to-noise levels in Cryo-
EM (often as low as 0.05 [4]; see Fig. 1) and the different
image formation model prevent the use of common feature
matching techniques to establish correspondences. Com-
puted Tomography (CT) [13, 10] uses a similar imaging
model (orthographic integral projection), however in CT the
projection direction of each image is known whereas with
Cryo-EM the relative pose of each particle is unknown.
Existing Cryo-EM techniques, e.g., [7, |1, 34, 37], suf-
fer from two key problems. First, without good initializa-
tion, they converge to poor or incorrect solutions [12], often
with little indication that something went wrong. Second,
they are extremely slow, which limits the number of parti-
cles images one can use as input to mitigate the effects of
noise; e.g., the website of the RELION package [34] reports
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requiring two weeks on 300 cores to process a dataset with
200,000 images.

We introduce a framework for Cryo-EM density estima-
tion, formulating the problem as one of stochastic optimiza-
tion to perform maximum-a-posteriori (MAP) estimation in
a probabilistic model. The approach is remarkably efficient,
providing useful low resolution density estimates in an hour.
We also show that our stochastic optimization technique is
insensitive to initialization, allowing the use of random ini-
tializations. We further introduce a novel importance sam-
pling scheme that dramatically reduces the computational
costs associated with high resolution reconstruction. This
leads to speedups of 100,000-fold or more, allowing struc-
tures to be determined in a day on a modern workstation. In
addition, the proposed framework is flexible, allowing parts
of the model to be changed and improved without impacting
the estimation; e.g., we compare the use of three different
priors. To demonstrate our method, we perform reconstruc-
tions on two real datasets and one synthetic dataset.

2. Background and Related Work

In Cryo-EM, a purified solution of the target molecule
is cryogenically frozen into a thin (single molecule thick)
film, and imaged with a transmission electron microscope.
A large number of such samples are obtained, each of which
provides a micrograph containing hundreds of visible, in-
dividual molecules. In a process known as particle pick-
ing, individual molecules are selected, resulting in a stack
of cropped particle images. Particle picking is often done
manually, however there have been recent moves to partially
or fully automate the process [17, 40]. Each particle image
provides a noisy view of the molecule, but with unknown
3D pose, see Fig. 2 (right). The reconstruction task is to es-
timate the 3D electron density of the target molecule from
the potentially large set of particle images.

Common approaches to Cryo-EM density estimation,
e.g., [7, 11, 37], use a form of iterative refinement. Based
on an initial estimate of the 3D density, they determine the
best matching pose for each particle image. A new density
estimate is then constructed using the Fourier Slice The-
orem (FST); i.e., the 2D Fourier transform of an integral
projection of the density corresponds to a slice through the
origin of the 3D Fourier transform of that density, in a plane
perpendicular to the projection direction [13]. Using the
3D pose for each particle image, the new density is found
through interpolation and averaging of the observed particle
images.

This approach is fundamentally limited in several ways.
Even if one begins with the correct 3D density, the low SNR
of particle images makes accurately identifying the correct
pose for each particle nearly impossible. This problem is
exacerbated when the initial density is inaccurate. Poor
initializations result in estimated structures that are either

clearly wrong (see Fig. 9) or, worse, appear plausible but
are misleading in reality, resulting in incorrectly estimated
3D structures [12]. Finally, and crucially for the case of
density estimation with many particle images, all data are
used at each refinement iteration, causing these methods to
be extremely slow. Mallick et al. [25] proposed an approach
which attempted to establish weak constraints on the rela-
tive 3D poses between different particle images. This was
used to initialize an iterative refinement algorithm to pro-
duce a final reconstruction. In contrast, our refinement ap-
proach does not require an accurate initialization.

To avoid the need to estimate a single 3D pose for each
particle image, Bayesian approaches have been proposed in
which the 3D poses for the particle images are treated as la-
tent variables, and then marginalized out numerically. This
approach was originally proposed by Sigworth [35] for 2D
image alignment and later by Scheres et al. [33] for 3D es-
timation and classification. It was since been used by Jaitly
et al. [14], where batch, gradient-based optimization was
performed. Nevertheless, due to the computational cost of
marginalization, the method was only applied to small num-
bers of class-average images which are produced by cluster-
ing, aligning and averaging individual particle images ac-
cording to their appearance, to reduce noise and the number
of particle images used during the optimization. More re-
cently, pose marginalization was applied directly with par-
ticle images, using a batch Expectation-Maximization algo-
rithm in the RELION package [34]. However, this approach
is extremely computationally expensive. Here, the proposed
approach uses a similar marginalized likelihood, however
unlike previous methods, stochastic rather than batch op-
timization is used. We show that this allows for efficient
optimization, and for robustness with respect to initializa-
tion. We further introduce a novel importance sampling
technique that dramatically reduces the computational cost
of the marginalization when working at high resolutions.

3. A Framework for 3D Density Estimation

Here we present our framework for density estimation
which includes a probabilistic generative model of image
formation, stochastic optimization to cope with large-scale
datasets, and importance sampling to efficiently marginalize
over the unknown 3D pose of the particle in each image.

3.1. Image Formation Model

In Cryo-EM, particle images are formed as orthographic,
integral projections of the electron density of a molecule,
V € RP®. In each image, the density is oriented in an un-
known pose, R € SO(3), relative to the direction of the
microscope beam. The projection along this unknown di-
rection is a linear operator, which is represented by the ma-
trix Pr € RP *xD?, Along with pose, the in-plane transla-
tion t € R? of each particle image is unknown, the effect of
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Figure 2: A generative image formation model in Cryo-EM. The electron beam results in an orthographic integral projection
of the electron density of the specimen. This projection is modulated by the Contrast Transfer Function (CTF) and corrupted
with noise. The images pictured here showcase the low SNR typical in Cryo-EM. The zeros in the CTF (which completely
destroy some spatial information) make estimation particularly challenging, however their locations vary as a function of
microscope parameters. These are set differently across particle images in order to mitigate this problem. Particle images

and density from [18].

which is similarly represented by a matrix Sg € RD**D”,
The resulting shifted projection is corrupted by two phe-
nomena: a contrast transfer function (CTF) and noise. The
CTF is analogous to the effects of defocus in a conventional
light camera and can be modelled as a convolution of the
projected image. This linear operation is represented here
by the matrix Cg € RP**D” where 6 are the parameters of
the CTF model [30]. The Fourier spectrum of a typical CTF
is shown in Figure 2; note the phase changes which result
in zero crossings (not typically observed in traditional light
cameras) and the attenuation at higher frequencies which
makes estimation particularly challenging. CTF parame-
ters, 0, are assumed to be given; CTF estimation is beyond
the scope of this work, but is routinely done using existing
tools, e.g., [24, 27].

As noted above, and clearly seen in Figure 2, there is
a large amount of noise present in typical particle images.
This is primarily due to the sensitive nature of biological
specimens, requiring extremely low exposures. The noise
is modelled using an IID Gaussian distribution, resulting in
the following expression for the conditional distribution of
a particle image, 7 € RD’,

p(Z]0,R,t,V) = N(Z|CyS:PrV, 1) (1)

where o is the standard deviation of the noise and NV (-], )
is the multivariate normal distribution with mean vector
and covariance matrix X..

In practice, due to computational considerations, Equa-
tion (1) is evaluated in Fourier space, making use of the

Fourier Slice Theorem and Parseval’s Theorem to obtain
p(Z]6,R,t,V) = N(Z|CpS:PrV,0°T)  (2)

where 7 is the 2D Fourier transform of the image, S¢ is
the shift operator in Fourier space (a phase change), Cy
is the CTF modulation in Fourier space (a diagonal oper-
ator), Pg is a sinc interpolation operator which extracts a
plane through the origin defined by the projection orienta-
tion R and V is the 3D Fourier transform of V. To speed the
computation of the likelihood, and due to the level of noise
and attenuation of high frequencies by the CTF, a maximum
frequency is specified, w, beyond which frequencies are ig-
nored.

The 3D pose, R, and shift, t, of each particle image are
unknown and treated as latent variables which are marginal-
ized out [35, 33]. Assuming R and t are independent of
each other and the density V), one obtains

0,R,t,V)p(R)p(t)dRdt

p(T16.7) = / / e
Jr2 Jso3)
3)

where p(R) is a prior over 3D poses, R € SO(3), and p(t)
is a prior over translations, t € R2. In general, nothing is
known about the projection direction so p(R) is assumed to
be a uniform distribution. Particles are picked to be close
to the center of each image, so p(t) is chosen to be a Gaus-
sian distribution centered in the image. The above double
integral is not analytically tractable, so numerical quadra-
ture is used [22, 9]. The conditional probability of an image
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(likelihood) then becomes

p(Z16, V) ZwRZwkp 716, R;, te, V)p(R)p(t)

“)
where {(R;, wf—‘)}MR are weighted quadrature points over
SO(3) and {(te, wt)}™, are weighted quadrature points
over R2. The accuracy of the quadrature scheme, and con-
sequently the values of My and My, are set automatically
based on w, the specified maximum frequency such that
higher values of w results in more quadrature points.

Given a set of K images with CTF parameters ® =
{(Z;,6;)}E | and assuming conditional independence of the
images, the posterior probability of a density V is

p(V®) o p(V HPIIHUV )

i=1

where p(V) is a prior over 3D molecular electron densities.
Several choices of prior are explored below, but we found
that a simple independent exponential prior worked well.
Specifically, p(V) = T[], Ae=*V: where V) is the value
of the ith voxel and A is the inverse scale parameter. Other
choices of prior are possible and is a promising direction for
future research.

Estimating the density now corresponds to finding V
which maximizes Equation (5). Taking the negative log
and dropping constant factors, the optimization problem be-
comes arg min,,_p 3 fo),

+

K ~ ~
> logp(Zil6:, V) (6)

i=1

f(V) = —logp(V) -

where V is restricted to be positive (negative density is phys-
ically unrealistic). Optimizing Eq. (6) directly is costly due
to the marginalization in Eq. (4) as well as the large num-
ber (K) of particle images in a typical dataset. To deal with
these challenges, the following sections propose the use of
two techniques, namely, stochastic optimization and impor-
tance sampling.

3.2. Stochastic Optimization

In order to efficiently cope with the large number of
particle images in a typical dataset, we propose the use
of stochastic optimization methods. Stochastic optimiza-
tion methods exploit the large amount of redundancy in
most datasets by only considering subsets of data (i.e., im-
ages) at each iteration by rewriting the objective as f(V) =
>k fu(V) where each f,(V) evaluates a subset of data.
This allows for fast progress to be made before a batch op-
timization algorithm would be able to take a single step.

There are a wide range of such methods, ranging from
simple stochastic gradient descent with momentum [28, 29,

] to more complex methods such as Natural Gradient
methods [2, 3, 19, 20] and Hessian-free optimization [26].
Here we propose the use of Stochastic Average Gradient
Descent (SAGD) [21] which has several important advan-
tages. First, it is effectively self-tuning, using a line-search
to determine and adapt the learning rate. This is particu-
larly important, as many methods require significant man-
ual tuning for new objective functions and, potentially, each
new dataset. Further, it is specifically designed for the finite
dataset case allowing for faster convergence.

At each iteration 7, SAGD [21] considers only a single
subset of data, k., which defines part of the objective func-
tion fi_(V) and its gradient g._()). The density V is then
updated as

K
€ T
Viv1 =Vr — L ;:1 dv; (N

where € is a base learning rate, L is a Lipschitz constant of
gr(V), and

dw_{amvkzm )
dV;~' otherwise

is the most recent gradient evaluation of datapoint j at it-
eration 7. This step can be computed efficiently by stor-
ing the gradient of each observation and updating a run-
ning sum each time a new gradient is seen. The Lipschitz
constant L is not generally known but can be estimated us-
ing a line-search technique. Theoretically, convergence oc-
curs for values of ¢ < % [21], however in practice larger
values at early iterations can be beneficial, thus we use
e = max($, 2!~ 7/150)) To allow parallelization and re-
duce the memory requires of SAGD, the data is divided into
minibatches of 200 particles images. Finally, to enforce the
positivity of density, negative values of V are truncated to
zero after each iteration. More details of the stochastic op-
timization can be found in the Supplemental Material.

3.3. Importance Sampling

While stochastic optimization allows us to scale to large
datasets, the cost of computing the required gradient for
each image remains high due to the marginalization over
orientations and shifts. Intuitively, one could consider ran-
domly selecting a subset of the terms in Eq. (4) and using
this as an approximation. This idea is formalized by impor-
tance sampling (IS) which allows for an efficient and accu-
rate approximation of the discrete sums in Eq. (4)." A full
review of importance sampling is beyond the scope of this
paper but we refer readers to [38].

'One can also apply importance sampling directly to the continuous
integrals in Eq. (3) but it can be computationally advantageous to precom-
pute a fixed set of projection and shift matrices, PR and S¢, which can be
reused across particle images.
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To apply importance sampling, consider the inner sum
from Eq. (4), rewriting it as

M, M, w p
; N
G = wipje = q;( qu ) 9

=1 =1 £

where pj¢ = p(Z]6,R;, te, V)p(R;)p(ts) and qf =
(¢,....q%,)" is the parameter vector of a multinomial im-
portance distribution such that Zéwtl g; = 1 and qz > 0.
The domain of gt correspondq to the set of quadrature

points in Equation (4). Then, o can be thought of as the
expected value E [M] where £ is a random variable dis-
qg

tributed according to qt. If a set of Ny < M; random
indexes J* are drawn according to qF, then

1 wipj e
. L2 (10)
TN z%:t U
Thus, we can efficiently approximate (b? by drawing sam-
ples according to the importance distribution g® and com-
puting the average. Using this approximation in Eq. (4)
gives

M,
(16, V) f ) WD, 11

LeTt

and importance sampling can be similarly used for the outer
summation to give

p(Z10,V) ~ Z

jeEIR

12
qj (,;thp”> (12)

where J® are samples drawn from the importance distribu-
tion q® = (¢, ... ,qﬁR)T used for approximating

& 1 A,
t R —~ Jj 7
ng = E Wy Dju —N E ——R - (13)
j=1 R jeIR 1j

The accuracy of the approximation in Eq. (12) is controlled
by the number of samples used, with the error going to
zero as N increases. We use N = sps(q) samples where
s(a) = (3, 47) ! is the effective sample size [8] and sg is
a scaling factor. This choice ensures that when the impor-
tance distribution is diffuse, more samples are used.

While the estimates provided by IS are unbiased, their
error can be arbitrarily bad if the importance distribution is
not well chosen. To choose a suitable importance distribu-
tion, we make two observations. First, the values (]52 and (f)?
are proportional to the marginal probability of single parti-
cle image having been generated with shift t, or pose R;,
making them natural choices on which to base the impor-
tance distributions. Second, these values remain stable once

O B N W Hd U
— T

KL Divergence (nats)

|
-

0 2 4 6 8 10 12 14
Figure 3: The KL divergence between the values of ¢! at
the current and previous epochs on the thermus dataset.

GroEL-GroES [29] Thermus ATPase [18] Bovine ATPase [31]

Figure 4: Previously published structures for the datasets
used in this paper.

the rough shape of the structure has been determined. This
can be seen in Figure 3 which shows that by the third epoch
the KL divergence of the values of ¢® from one epoch to
the next is extremely small.

Thus we use these quantities, computed from the previ-
ous iterations, to construct the importance distributions at
the current iteration. Dropping the R or t superscripts for
clarity, let J be the set of samples evaluated at the previous
iteration and ¢; be the computed values for ¢ € J. Then the
importance distribution used at the current iteration is

¢j=(1—-a)Z27'¢; + aty; (14)
where 1; is a uniform prior distribution, « controls
how much the previous distribution is relied on, Z7 =
> bj, and ¢, Yies @l/T ;- Here T is an
annealing parameter and K;; are entries of a kernel
matrix computed on the quadrature points which dif-
fuses probability to nearby quadrature points. The val-
ues for @ = max(0.05,27925ren/501) and T =
max(1.25,210:0/L7eree /500 are set so that at early itera-
tions, when the underlying density is changing, we rely
more heavily on the prior. For K we use a Gaussian kernel
for the shifts and a Fisher kernel for the orientations. The
bandwidth of the kernel is tuned based on the current reso-
lution of the quadrature scheme, e.g., the Gaussian shift ker-
nel bandwidth is set to be equal to the spacing between the
shift quadrature points. More details on importance sam-
pling can be found in the Supplemental Material.
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Figure 5: The random initialization (left) used in all ex-
periments, generated by summing random spheres, and re-
construction of the thermus dataset after various amounts of
computation. Note that within an hour of computation, the
gross structure is already well determined, after which fine
details emerge gradually.

4. Experiments

The proposed method was applied to two experimental
datasets and one synthetic dataset. All experiments used the
same parameters and were initialized using the same ran-
domly generated density shown in Figure 5(left). The maxi-
mum frequency considered was gradually increased from an
initial value of w = 1/40A to a maximum of w = 1/10A.
This maximum frequency corresponds to the resolution of
the best published results for the datasets used here, i.e.,
[18]. Optimizations were run until the maximum resolution
was reached and the average error on a held-out set of 100
particle images stopped improving, around 5000 iterations.

Datasets The first dataset was ATP synthase from the
thermus thermophilus bacteria, a large transmembrane
molecule. The thermus dataset consisted of 46,105 par-
ticle images which were provided by Lau and Rubinstein
[18]. The high resolution structure from [18] and some
sample images are shown in Figure 2. The second dataset
was bovine mitochondrial ATP synthase [31]. The bovine
dataset, provided by Rubinstein et al. [31], consisted of
5,984 particle images. In all cases the particle images pro-
vided were 128 x 128, had a resolution of 2.8A (0.28nm
per pixel) and CTF information for each particle image was
provided. The noise level, o, was estimated by computing
the standard deviation of pixels around the boundary of the
particle images.

To showcase the ability of our method to handle a dra-
matically different type of structure, a third dataset was
synthesized by taking an existing structure from the Pro-
tein Data Bank’, GroEL-GroES-(ADP)7 [39], and gener-
ating 40, 000 random projections according to the genera-
tive model. CTF, signal-to-noise level and other parameters
were set realistically based on the thermus dataset values.

2Structure 1AON from http://pdb.org
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Figure 6: Relative error (blue, left axis) and fraction of
total quadrature points (red, right axis) used in computing
log p(Z|0, V) as a function of the ESS scaling factor, s
(horizontal axis). Note the log-scale of the axes.

This structure, as well as previously solved structures of the
bovine and thermus ATP synthase molecules are shown in
Figure 4. GroEL-GroES, was selected because it is struc-
turally unlike either of the bovine or thermus ATP synthase
molecules. Sample GroEL synthetic images can be see in
Figure 11 (top left).

Results of our method on these datasets are shown in Fig-
ure 11. Sample particle images are shown, along with an
iso-surface and slices of the final estimated density. Com-
puting these reconstructions took less than 24 hours in all
cases. Further, even at early iterations, reasonable structures
are available. Figure 5 shows the estimated structure for the
thermus dataset over time during optimization. Notably, af-
ter just one hour (during which only a fraction of the full
dataset is seen), the low-resolution shape of the structure
has already been determined.

Importance Sampling To validate our importance sam-
pling approach we evaluated the error made in computing
log p(j |6, 1}) using IS against computing the exact sum in
Equation (4) without IS. This error is plotted in Figure 6,
along with the fraction of quadrature points used at various
values of sg. Based on these plots we selected a factor of
sp = 10 for all experiments as a trade-off between accuracy
and speed achieving a relative error of less then 0.1% while
still providing significant speedups.

To see just how much of a speedup importance sampling
provides in practice, we plotted in Figure 7 the fraction of
quadrature points which needed to be evaluated during op-
timization. As can be seen initially, all quadrature points
are evaluated but as optimization progresses and the density
(and consequently the distribution over poses) becomes bet-
ter determined importance sampling yields larger and larger
speedups. At the full resolution, importance sampling pro-
vided more than a 100,000 fold speedup.

No prior knowledge of the orientation distribution was
assumed. However, for many particles, certain views are

3104



= = =
° o o &
e

=
S
A

=
<,
&

Fraction of Points Evaluated

-
S,
&

i L L L
0 1000 2000 3000 4000 5000

Figure 7: The fraction of quadrature points evaluated on
average during optimization (horizontal axis is iterations).
As resolution increases, the speedup obtained increases sig-
nificantly yielding more than a 100,000 fold speedup.

Figure 8: A Winkel-Tripel projection of the importance dis-

tribution of view directions, qR, averaged over the thermus

dataset at a typical iteration. Clearly visible is the equatorial
belt of likely views, while axis aligned views (those on the
top or bottom of the plot) are rarely seen.

more likely than others. This fact can be seen by examining
the average importance distribution for the thermus dataset,
shown in Figure 8 for a typical iteration. Here we can see
clearly that the distribution of views forms an equatorial belt
around the particle, while top or bottom views are rarely if
ever seen. This phenomenon is well known for particles
like these (e.g., see [31] where this knowledge was used di-
rectly in estimation), validating our sampling approach and
suggesting a use of this average importance distribution to
supplement the uniform prior distribution in Eq. (14).

Initialization and Comparison to State-of-the-Art To
compare this method to existing methods for structure de-
termination, we selected two representative approaches.
The first is a standard iterative projection matching scheme
where images are matched to an initial density through a
global cross-correlation search [ 1]. The density is then re-
constructed based on these fixed orientations and this pro-
cess is iterated. The second is the RELION package de-
scribed in [34] which uses a similar marginalized model
as our method but with a batch EM algorithm to perform
optimization. We used publicly available code for both of
these approaches on the thermus dataset and initialized us-
ing the density shown in Figure 5. We ran each method for
a number of iterations roughly equivalent computationally

g

Projection Matching RELION Proposed Approach

Figure 9: Baseline comparisons to two existing standard
methods. Iterative projection matching and reconstruction
(left) and RELION [34] (middle). The proposed method
(right) is able to determine the correct structure while pro-
jection matching and RELION both become trapped in poor
local optima. See Fig. 9(middle) for comparison. All meth-
ods used the same random initialization shown in Fig. 5.

<LK

Figure 10: Slices through the reconstructions with (from
left to right) uniform, CAR and exponential priors. The ex-
ponential prior does the best job of suppressing noise in the
background without oversmoothing fine details within the
structure. Blue corresponds to small or zero density and red
corresponds to high density.

to the 5000 iterations used by our method and the results are
shown in Figure 9. In both cases the approaches had clearly
determined an incorrect structure and appeared to have con-
verged to a local minimum as no further progress was made.
Both projection matching and RELION have been used suc-
cessfully for reconstruction by others and are not recom-
mended to be used without a good initialization. Our results
support this recommendation as neither approach converges
from random initializations. In practice, it is difficult to con-
struct good initializations for molecules of unknown shape
[12], giving our proposed method a significant advantage.

Comparing Priors The above results used an exponen-
tial prior for the density at the voxels of V;, however the
presented framework allows for any continuous and dif-
ferentiable prior to be used. To demonstrate this, we
explored two other priors: an improper (uniform) prior,
p(V;) x 1, and a conditionally autoregressive (CAR) prior
5] pVilV=i) = N(Vilss >~ ;eNbhd(i) Vj, 0% 45) which
is a smoothness prior biasing each voxel towards the mean
of its 26 immediate neighbours Nbhd(:). Slices through
the resulting densities on thermus under these priors are
shown in Figure 10. With an improper uniform prior (Fig.

3105



Sample Particle Images

3D Reconstruction

3D Slices

e g R
Ny S

GroEL-GroES

Thermus ATPase

Bovine ATPase

Figure 11: Sample particle images (left), an isosurface of the reconstructed 3D density (middle) and slices through the 3D
density with colour indicating relative density (right) for GroEL-GroES (top), thermus thermophilus ATPase (middle) and
bovine mitochondrial ATPase (bottom). The relative root expected mean squared error (RREMSE) on a held-out test set
was 0.99, 0.96 and 0.98 with values relative to the estimated noise level. See Supplemental Material for more on the error
measure. Reconstructions took a day or less on a 16 core workstation.

10,left), there is significant noise visible in the background.
This noise is somewhat suppressed with the CAR prior (Fig.
10,middle) however the best results are clearly obtained us-
ing the exponential prior which suppresses the background
noise without smoothing out internal details.

5. Conclusions

This paper introduces a framework for efficient 3D
molecular reconstruction from Cryo-EM images. It com-
prises MAP estimation of 3D structure with a genera-
tive model, marginalization over 3D particle poses, and
optimization using SAGD. A novel importance sampling
scheme was used to reduce the computational cost of
marginalization. The resulting approach can be applied to
large stacks of Cryo-EM images, providing high resolution
reconstructions in a day on a 16-core workstation.

The problem of density estimation for Cryo-EM is a fas-
cinating vision problem. The low SNR in particle images
makes it remarkable that any molecular structure can be es-

timated, let alone the high resolution densities which are
now common. Recent research [23] suggests that the com-
bination of new techniques and new sensors may facilitate
atomic resolution reconstructions for arbitrary molecules.
This development will be ground-breaking in both biologi-
cal and medical research.

Beyond the work described in this paper, there remain a
number of unresolved questions for future research. While
an exponential prior was found to be effective, more sophis-
ticated priors could be learned, potentially enabling higher
resolution estimation without the need to collect more data
and providing a kind of of atomic-scale super-resolution.
The optimization problem is challenging, and, while SAGD
was successful here, it is likely that more efficient stochastic
optimization methods are possible by exploiting the prob-
lem structure to a greater degree. In order to encourage oth-
ers to work on this problem, source code will be available
from the authors’ website.
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