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Abstract

We present a novel method for summarizing raw, casu-

ally captured videos. The objective is to create a short sum-

mary that still conveys the story. It should thus be both,

interesting and representative for the input video. Previous

methods often used simplified assumptions and only opti-

mized for one of these goals. Alternatively, they used hand-

defined objectives that were optimized sequentially by mak-

ing consecutive hard decisions. This limits their use to a

particular setting. Instead, we introduce a new method that

(i) uses a supervised approach in order to learn the im-

portance of global characteristics of a summary and (ii)

jointly optimizes for multiple objectives and thus creates

summaries that posses multiple properties of a good sum-

mary. Experiments on two challenging and very diverse

datasets demonstrate the effectiveness of our method, where

we outperform or match current state-of-the-art.

1. Introduction

With the success of mobile phones, activity cameras,

Google Glass, etc. video recording devices have become

omnipresent. As a consequence, vast amounts of videos are

recorded every day to capture special moments or log daily

activities. At the same time, with video capture becoming

so easy and cheap, and with the strongly egocentric view-

points that the devices often induce, videos are recorded ca-

sually. As in digital photography, many users follow a cap-

ture first, filter later mentality, where little thought is spent

on timing, cutting, content and view selection. As a result,

such casual videos are too long, shaky, redundant and low-

paced to watch in their entirety. Therefore, reducing videos

to their gist and removing bad parts is of increasing impor-

tance. As a result, video summarization, which automates

this process, has gained a lot of attention in the last few

years [33, 9, 29, 15, 11, 24, 1, 12, 39].

Automatically creating skims is challenging, as even a

strongly shortened version should still convey the story of

the initial video. A good summary must comply with at
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Figure 1: Overview. Our method consists of two parts: A supervised

learning stage (training) and inference (testing). Given pairs of videos and

their user created summaries as training examples, we learn a combined

objective. Then, when given a new video as input, our method creates

summaries that are both interesting and representative.

least two objectives [35]. Firstly, it should contain the most

interesting parts of a video e.g. in a base jumping video one

doesn’t want to miss highlights such as the start or landing.

Secondly, the summary should be representative in keeping

the diversity of the original, while removing redundancy.

Many recent methods predict a score per segment and

ignore the structure of the video [33, 9, 29], and there-

fore have difficulties to jointly optimize both objectives.

Methods that go in this direction typically cluster the video

into events and select the most important segment(s) per

event [15, 11], following a kind of successive optimiza-

tion of the objectives. Others optimize diversity only lo-

cally using a Markov assumption [6]. Instead, our method

optimizes for multiple objectives globally, avoiding hard

decisions early on. Rather than using supervision only

for some components [15] or making simplifying assump-

tions [33, 9, 29], our method learns the importance of sum-

marization objectives directly from reference summaries

created by human annotators, as depicted in Fig. 1. Using

supervision for the task of video summarization is crucial,

since it is extremely complex and highly task-dependent –

summaries from surveillance or live-logging data are ex-

pected to meet different criteria than summaries of short

clips obtained by a mobile phone. Our approach is able to

automatically adapt to the type of video and the desired out-

put. It is therefore much more general and can be applied in
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all of these settings. Indeed, our experiments show that our

method obtains state of the art performance in summariz-

ing hour long life-logging videos [15], as well as short user

videos [9].

2. Related Work

Videos can be summarized into many different represen-

tations: Keyframes [37, 15, 11, 12], skims [9, 24], story-

boards [4], time-lapses [13], montages [34] or video syn-

opses [30]. Here, we focus on approaches for generat-

ing and evaluating skims (dynamic video summaries)1, i.e.

methods that output a shortened version of the initial video,

rather than transforming the video into e.g. a collection of

images. Skims have the advantage that they retain mo-

tion information and can provide a nice viewing experience.

Following Truong and Venkatesh [35], we review related

work categorized into methods optimizing for (i) the preser-

vation of interesting segments and (ii) representativeness of

the summary. Further, we (iii) analyze methods optimizing

for multiple objectives.

Interestingness/relevance. In order to select keyframes or

segments for a summary, many methods predict the impor-

tance score for each keyframe or segment. This is typi-

cally formulated as a regression (e.g. [9]) or ranking prob-

lem (e.g. [33]). Thereby some features are extracted from

a video segment, in order to predict its relevance. For this,

Potapov et al. [29] use videos annotated for a certain event

category. Instead, Sun et al. [33] mine YouTube videos in

order to train their model. Thereby they use the correspon-

dence between the raw and edited version of a video in order

to obtain labels for training. This is based on the assump-

tion, that segments contained in the edited version are more

relevant than the ones that are not. Both of these method

are however not evaluated in terms of summary quality, but

rather in terms of their ability to detect the highlight seg-

ment [33] or the most relevant segments for a certain cat-

egory [29], criteria for which the overall structure of the

video and the summary does play no role.

Representativeness. While optimizing for interestingness

ignores the global structure of a summary, optimizing for

representativeness only risks leaving out the most crucial

event(s). Therefore only a few approaches in this area ex-

ist. Li and Merialdo [18] adapt the Maximal Marginal Rel-

evance (MMR) approach [2] from the text to the video do-

main. This approach greedily selects a summary using an

objective that optimizes for relevance w.r.t. the input video

and penalizes redundancy within the summary. [39] uses

sparse coding, in order to create a dictionary that serves as

a summary. This method is particularly useful for longer

videos, as it can be run in an online fashion.

1For a systematic and detailed review of the existing techniques, the

readers are referred to [35].

Multi-objective. Several methods optimize for multiple ob-

jectives. Khosla et al. [11] use web priors to predict rele-

vance. Thereby they cluster web images to learn canonical

viewpoints as used in a specific domain (e.g. cars). In or-

der to create a summary, they select the most central video

frame per cluster. This way, the keyframes are similar to

web images, while the summary remains diverse. Kim et

al. [12] combine web priors with sub-modular maximiza-

tion. They formulate the problem as a subset selection in a

graph of web images and video frames. Given this graph,

they optimize an anisotropic diffusion objective to select

a set of densely connected but diverse nodes. This leads

to summaries that strike a balance between relevance to

the event and representativeness within the video. Lee et

al. [15] propose a comprehensive method for summariza-

tion of egocentric videos. They introduce a method that

clusters the video into events using global image features

and a temporal regularization, which ensures that clusters

are compact in time. For each cluster they predict the im-

portance of the objects it contains and select the most impor-

tant ones for the final summary. As our work, Li et al. [17]

uses a structured learning formulation, but focuses on trans-

fer learning from text and has no approximation guarantees,

since it doesn’t restrict the objectives to be submodular [22].

We summarize the most related works in a taxonomy in

Tab. 1. Thereby we analyze the objectives used for each

method and how these objectives are combined and opti-

mized. While existing methods focused on interestingness

or representativeness, we also find temporal distribution of

the summary to be important. In line with [11], we observe

(Sec. 5.1), that uniform sampling provides a strong baseline,

typically outperforming clustering based approaches. Uni-

form sampling, as naı̈ve as it is, retains temporal coherence

and thus gives a good sense of the story of the initial video.

Many previous methods made simplified assumptions or de-

fined an objective based on heuristics. Instead, we follow a

supervised learning approach, where we learn the impor-

tance of the different objectives. Given a new video, these

objectives are optimized jointly to create a summary.

O
b

j.

Sun

[33]

Gygli

[9]

Patapov

[29]

Lee

[15]

Kim

[12]

Ours

Interesting
√ √ √ √ √ √

Representative - - -
√ √ √

Uniform - - - (
√
) -

√

C
o

m
b

. Learnt weights - - - - -
√

Optimized

jointly
- - - -

√ √

Table 1: Taxonomy of the most recent and relevant video summarization

methods. We differentiate in terms of objectives they optimize and and how

they combine multiple objectives. Many methods score segment locally.

Others combine multiple objectives, but do so based on a hand-defined

sequential optimization. In opposition, we learn the importance of each

objective from data and optimize them jointly.
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Evaluation. Objectively evaluating a summary is a hard

task, as there is not one true summary, but rather many

ways to summarize a video well. Early methods used user

studies, where viewers where asked to score [27] or com-

pare [15, 24] automatically generated summaries. A con-

sensus has grown that videos should be evaluated automati-

cally to simplify evaluation and comparison [35, 29, 9, 38].

This is either done in the video [9] or text domain [38] us-

ing multiple reference summaries. Gygli et al. [9] evaluate

using the frame overlap between an automatically generated

summary and some reference summaries. As different sum-

maries with a practically equivalent semantic meaning are

possible, they use a large number of human annotated refer-

ence summaries per video to reflect this ambiguity. Instead,

Young et al. [38] map a video summary into text and use

an existing text summarization evaluation [19]. This has

the advantage, that summaries are compared in terms of se-

mantics. It however also means that the evaluation does not

take into account visual aspects such as shaky cameras, etc.,

as long as a certain content is depicted.

3. Structured prediction with submodular

functions

We formulate the task of video summarization as a sub-

set selection problem. We are given a video V and a bud-

get B. Let YV denote the set of all possible solutions y ⊆ V
given this constraint.

The task of our method is to select a summary y∗, such

that it optimizes an objective o:

y∗ = arg max
y∈YV

o(xV ,y), (1)

where xV are all features extracted from the video V .

We define o(xV ,y) as a linear combination of objectives

f(xV ,y) = [f1(xV ,y), f2(xV ,y), ..., fn(xV ,y)]
T , each

capturing a different aspect of a summary:

o(xV ,y) = wTf(xV ,y). (2)

The objectives are defined in Sec. 4. Since YV is grow-

ing exponentially with the length of the video, optimally

solving Eq. (2) quickly becomes intractable. Therefore, we

restrict the objectives f(xV ,y) to be monotone submodular

and w to be non-negative. This allows to find a near optimal

solution for Eq. (1) in an efficient way [26]2.

Next, we give a brief overview of submodular maximiza-

tion and show how to learn the weights w. Then, Sec. 4 pro-

poses functions f(xV ,y) adapted to the problem of video

summarization.

2Without constraining w to be non-negative, o(xV ,y) would not be

guaranteed to be submodular and thus difficult to optimize.

3.1. Submodular maximization

Set functions are submodular if they fulfill the dimin-

ishing returns property, i.e. given arbitrary sets T ⊆ U ⊆
V \ {s} and a set function f , f is submodular, if it satisfies:

f(T ∪ {s}) − f(T ) ≥ f(U ∪ {s}) − f(U). Linear com-

binations of submodular functions are also submodular for

non-negative weights [14].

Submodular functions offer several properties desirable

for optimization. It has been shown by Nemhauser et

al. [26] that maximizing a monotonous submodular func-

tion under cardinality constraints with a greedy algo-

rithm yields a good approximation of the optimal solu-

tion: the score of the greedy solution is lower bounded

by e−1
e

(≈ 63%) times the optimal value [26]. With

cost constraints, i.e. the submodular knapsack problem, the

greedy algorithm can perform arbitrarily bad. However

Leskovec et al. [16] showed that by solving a standard and

a cost-benefit greedy optimization and selecting the solu-

tion with the higher score, this is lower bounded by 1
2
e−1
e

times the optimal value. In practice, however, the greedy

solution often performs much better, with an approximation

factor close to 1 [20] and can be speeded up with lazy evalu-

ations [25]. These properties are crucial for the task at hand,

in order to have a scalable algorithm. In our work, we use

the algorithm of [16] with lazy evaluations [25] to optimize

Eq. (1), shown in Algo. 1.

For more information on submodular function maxi-

mization we refer the reader to [14].

3.2. Learning

Given T pairs of a video and a reference summary

(V,ygt), we learn the weight vector w of Eq. (2). Thereby

we optimize the following large-margin formulation:

min
w≥0

1

T

T
∑

t=1

L̂t(w) +
λ

2
||w||2, (3)

where L̂t(w) is the generalized hinge loss of training exam-

ple t [22]:

L̂t(w) = max
y⊆YV

(t)
(wTf(x

(t)
V ,y)+lt(y))−wTf(x

(t)
V ,y

(t)
gt ),

(4)

where we use superscript (t) to refer to the features and sub-

sets of video t. The intuition behind this objective is that

each human reference summary y
(t)
gt should score higher

than any other summary by some margin. Given the com-

plexity of the subset selection problem, finding the best

scoring element in Eq. (4) can only be done approximately,

as discussed above. We therefore resort to approximately

learning and optimizing the objective using projected sub-

gradient descent [22].

3



Algorithm 1 Inference algorithm for submodular max-

imization with approximation bounds and lazy evalua-

tions [25, 16].

1: function INFERENCE(V,xV , c,w, f , B)

2: yuc ←LAZYGREEDY(V,xV , c,w, f , B, uniform cost)
3: ycb ←LAZYGREEDY(V,xV , c,w, f , B, cost benefit)
4: return argmax

(

wT f(xV ,yuc),w
T f(xV ,ycb)

)

5: end function

6:

7: function LAZYGREEDY(V,xV , c,w, f , B, type)

8: y← ∅ ⊲ Start from an empty solution

9: δs ←∞, ∀s ∈ V ⊲ Initialize marginal gains

10: while ∃s ∈ V \ y : c(y ∪ {s}) ≤ B do

11: curs ← false, ∀s ∈ V \ y ⊲ Set gains to outdated

12: while true do

13: if type = uniform cost then

14: s∗ ∈ argmax
s∈V\y,c(y∪{s})≤B

δs ⊲ Max gain

15: else if type = cost benefit then

16: s∗ ∈ argmax
s∈V\y,c(y∪{s})≤B

δs
c(s)

⊲ Max gain / cost

17: end if

18: if curs∗ then ⊲ If gain of s∗ is up to date

19: y← y ∪ {s∗}; ⊲ Select the element

20: break

21: else ⊲ Else, update marginal

22: δs ← wT f(xV ,y ∪ {s
∗})−wT f(xV ,y)

23: end if

24: end while

25: end while

26: return y

27: end function

For the margin, we propose a recall loss, similar to the

one used in [22] for text summarization:

lt(y) =
1

B

(

|y| −
∣

∣

∣
y ∩ y(t)

∣

∣

∣

)

, (5)

i.e. it is a count of how many of the candidate summary y

are not represented in the ground truth, normalized by the

maximal length of the summary. We found this to work

best in our experiments, but other loss functions are also

possible.

Summarizing, the problem of subset selection is difficult to

optimize. But if the optimization can be posed as submod-

ular maximization, we have seen that there exist efficient

algorithms, which yield good approximations.

4. Submodular functions for video summariza-

tion

Submodular functions have already been used for sum-

marization problems, e.g. for document [23, 21, 22] and

also image collection [31, 36] and video summarization us-

ing keyframes [12]. This is not a coincidence, since sum-

marization inherently has a diminishing returns property:

The more segments that have already been selected from a

video, the less an additional segment helps to get a better

overview.

Defining submodular functions for the task of video

summarization is not straightforward, however. While sen-

tences of a document can be compared relatively easy, e.g.

by n-gram overlap, the problem of finding a semantic simi-

larity between video segments is largely unexplored. While

the dominant theme of a text can be found based on fre-

quent sentences (n-grams), finding frequent visual content

does not suffice to create a good summary. Even persons or

objects appearing only for a short period of time can be of

high importance for the whole video. It is therefore insuf-

ficient to optimize representativeness as for document sum-

marization [22]. Additional measures need to be used to

score video segments.

In the following, we define several submodular func-

tions, aimed at capturing the quality of a summary. Since

our method creates skims, we use segments as the atomic

entities, i.e. a video is defined as a set of segments: V =
{s1, s2, ...sn} from which we select a subset y∗ ⊂ V .

Interestingness. Following existing approaches, we pre-

dict the importance of a segment locally, i.e. without taking

into account the rest of the video. Specifically, we want to

predict a score I(k) of each frame k given its features xk.

This prediction might come from a general interestingness

model as in [15, 9], or from a model that predicts a score

of domain relevance, as in [33]. To allow for overlapping

segments, we use the union of frames in y and score them

with I(k)3. We use

f imp(xV ,y) =
∑

k∈
⋃

s
s∈y

I(k), (6)

where s is a segment in the solution y. This function is

called a weighted coverage function, which is known to be

submodular [14].

Representativeness. This function scores how well a sum-

mary represents the initial video. While many existing

methods clustered the video into events, we believe this

is not appropriate for raw videos, as they are continuous

and therefore have gradual changes between locations and

events. Instead, we propose an objective that favors repre-

sentative solutions while avoiding a hard clustering.

Finding the best k segments to represent a dataset is

known as the the k-medoids problem. Its objective is to

select a set of medoids, such that the sum of squared errors

between the datapoints and the nearest selected medoid is

3For the case of non-overlapping segmentations, this simply becomes:

f imp(xV ,y) =
∑

s∈y I(xs), i.e. it is modular and a score can be as-

signed to a segment directly, which is more computationally efficient.

4



minimal, i.e.

Lr(x
r,y) =

∑

i∈V

min
s∈y

||xr
i − xr

s||
2
2, (7)

where xr are the features used to represent a segment. Here,

we use global image features averaged over the segment

frames for xr. The k-medoid objective can be reformulated

as a submodular objective as follows:

frep(xV ,y) = Lr(x
r, {p′})− Lr(x

r,y ∪ {p′}), (8)

where p′ is a phantom exemplar [5], necessary to avoid tak-

ing the minimum over an empty set in Eq. (7).

Uniformity. As good summary tells the story of the input

video, it needs to retain temporal coherence. Large jumps

ahead can confuse a viewer. Similarly, a summary with

many temporally adjacent segments risks being redundant.

In order to avoid such problems, we propose a uniformity

objective, using the same form as representativeness:

funi(xV ,y) = Lr(x
u, {p′})− Lr(x

u,y ∪ {p′}), (9)

where we represent a segment using its mean frame number,

i.e the features in xu are single scalars in this case. This

objective scores how well the temporal dimension is rep-

resented by the solution y, effectively leading to solutions

that are more uniformly distributed over the video.

Using these objective functions, we can now estimate the

summarization objective Eq. (2). Given a set of videos

and their summaries as training examples, we learn the im-

portance of each function by optimizing Eq. (3). In the

next section, we evaluate the summaries generated by our

method and compare them to existing works.

5. Experiments

We evaluate the performance of our method and its in-

dividual components using two datasets: (i) the egocen-

tric dataset of [15] and (ii) the SumMe dataset [9]. These

datasets are extremely diverse: While the SumMe dataset

consists of short user videos, the egocentric dataset contains

hour long life-logging data from wearable cameras. There-

fore, we analyze them separately in Sec. 5.1 and Sec. 5.2.

Evaluation. We evaluate w.r.t. the nearest-neighbor sum-

mary, i.e. the one that is the most similar to the automat-

ically created one. This helps to account for the fact that

there exists not a single ground truth summary, but multi-

ple summaries are possible. This approach was also used

in ROUGE [19], which is the standard metric in document

summarization. We follow [9, 19, 38] and report the recall

and f-measure, motivated by the fact that including crucially

important events in more important than having perfect pre-

cision.

Compared methods. We compare to several baselines, as

well as state of the art methods: (i) Uniform sampling, (ii) a

previous method for the used dataset (SumMe: [9], egocen-

tric: [15]) and (iii) Video MMR (Maximal Marginal Rele-

vance) [2]. Video MMR, initially proposed for document

summarization, was adapted to the video domain by [18].

It uses a greedy maximization of an objective that favors

representativeness and penalizes redundancy of elements

within the summary. We use the approach of [18], but with

deep features [3], rather than SIFT+BoW to compute affini-

ties between segments.

Implementation details. To extract the representativeness

of a segment, we compute deep features trained on Ima-

geNet [3]. We use deep features, as they are the state of the

art visual features. Since they are trained for object clas-

sification, they capture objects of a scene. We used layer

6 of DeCAF [3], which has show the best performance on

various recognition tasks. For Eq (8) and Eq. (9), we use

a phantom element p′, which has the same distance to all

points in the dataset. For this, we take the mean distance of

the data points.

Since the learning process receives the data points in ran-

dom order, the output is also non-deterministic. Therefore

we run learning and inference 100 times and average the re-

sults. We do the same for all objectives, since some might

give the same score to multiple segments, i.e. there multi-

ple elements might have a maximal gain (see Algo. 1, Line

13/15) We use cross-testing with 4 and 12 splits, respec-

tively. All objectives were normalized such that the function

values lie within [0, 1].

5.1. Egocentric daily life dataset

The egocentric dataset of [15] contains 4 videos from

wearable cameras. These videos log the day of the camera-

wearer and have a duration of 3-5 hours, each, amounting

to over 17 hours of video. The dataset does not include

video reference summaries, but was annotated in [38] us-

ing text. Given the textual annotations for each segment of

the video, a video summary can be mapped into the textual

domain. There, it is compared to reference summaries us-

ing the ROUGE [19] evaluation package4. We use the same

ROUGE parameters as [38]. Since our method requires ref-

erence summaries to train, it also requires an inverse map-

ping. We follow [38] and generate video summaries using

a greedy bag of words and an ordered subshot method. In

order to obtain multiple summaries, we vary the parame-

ters (the n for the n-gram scoring as well as the order and

maximal jump in the ordered subshot). We score these and

remove the bottom 25%. Finally, we obtain 60 reference

summaries (15 per video).

In order to predict the interestingness of a segment

4http://www.berouge.com/
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Short (≈ 1min 20sec) Long (2min)
Method F-measure Recall F-measure Recall

O
th

er
s Random 19.44± 2.56% 13.76± 1.99% 25.34± 2.54% 22.91± 2.47%

Uniform 21.37± 1.88% 15.06± 1.48% 28.21± 2.68% 25.37± 2.58%
Lee et al. [15] 17.40± 4.07% 12.20± 3.30% - -

Video MMR [18] 17.73± 0.00% 12.49± 0.00% 25.57± 0.00% 23.10± 0.00%

O
u

rs

Uniformity 18.75± 1.36% 12.92± 1.11% 25.41± 1.35% 22.27± 1.56%
Interestingness 20.93± 0.00% 15.15± 0.00% 27.07± 0.00% 24.78± 0.00%
Representative 19.08± 0.00% 12.95± 0.00% 27.02± 0.00% 23.51± 0.00%

Combined 21.91± 0.06% 15.73± 0.04% 29.01± 1.18% 26.61± 1.23%

Table 2: Egocentric dataset. Performance of the individual objectives and previous methods vs. our approach. We report results for short (≈ 1 minute and

20 seconds) as used in [15] as well as longer (2 minute) summaries.

interestingness representativeness uniformity

7.1%

91.8%

Trained for 

summary length 1min 20s

Trained for 

summary length 2min

9.6%

38%
52.4%

Figure 2: Learnt weights per objective: We can observe how the learn-

ing algorithm adapts to the specific summary length: While interesting-

ness, i.e. a local prediction of importance for each segment, is the most

important objective for shorter lengths, having a representative and well

distributed solution becomes more important, as the summaries get longer.

(Eq. (6)), we train an classifier using deep features [3] and

the training data provided by [15]. Rather than learning

to classify an image region as [15], we only learn to clas-

sify whether a frame contains important objects or not. We

learn a linear classifier and use its prediction confidence as

an importance estimate. While more sophisticated tempo-

ral segmentation’s are possible, e.g. [28], we use uniform

segments with a length of 5 seconds. Since [38] provides

annotation for the same segmentation, this allows for a non-

ambiguous mapping to the textual domain in the evaluation.

Results. We evaluated our method using two summary

lengths: Longer summaries of 2 minutes and shorter sum-

maries as generated by [15]. On this dataset, our method

outperforms all compared methods (see Tab. 2). It is able

to learn the importance of the individual objectives for this

difficult task. Furthermore, our method adapts to differ-

ent summary lengths (see Fig 2). While for shorter sum-

maries, interestingness is dominant, representativeness and

uniformity get more weight for longer summaries. Thus,

in short summaries the method focuses more on highlights,

while it avoids getting redundant in longer summaries and

therefore gives more weight to selecting representative and

well distributed segments (the effect of this regularization

is shown in Fig. 3). In opposition to our work, all previ-

ous methods are outperformed by uniform sampling. While

this seems surprising, it can be explained by the type of

video: The videos in this dataset are very slow paced and

contain only few highlights. The main goal is therefore to

give an overview over a camera-wearers day, for which uni-

form sampling is a simple, but reasonable approach. An-

other reason might be that the used evaluation metric only

measures semantic summary quality (See Fig. 4 for an ex-

ample). Thus, it ignores whether a particular segment is

a good representative for a certain event (or has bad qual-

ity/motion blur). There, our method, as well as [15], have

an additional advantage over uniform sampling. We show a

visual comparison between [15], uniform sampling and our

approach in Fig. 5.

5.2. User video dataset

The SumMe dataset [9] consists of short user videos (1
to 7 minutes). These depict a certain event of interest, e.g.

a plane landing or a base jump. The dataset contains 25
videos, each annotated with ≥ 15 user summaries (390 ref-

erence summaries). The annotation was created in a con-

trolled environment, where users were asked to create their

own summary for a given video. To evaluate the generated

summaries, we compute the overlap with these user sum-

maries using the code provided5. For learning, we can di-

rectly use the user summaries of the training videos, as they

already are in the video domain.

In order to predict the interestingness of a segment, we

use the method of [9] with the same superframe segmenta-

tion. Given our submodular formulation however, it is not

necessary to pre-commit to a fixed set of disjoint segments

5http://vision.ee.ethz.ch/˜gyglim/vsum/
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