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Abstract

We introduce a novel method for using reflectance to
identify materials. Reflectance offers a unique signature of
the material but is challenging to measure and use for rec-
ognizing materials due to its high-dimensionality. In this
work, one-shot reflectance of a material surface which we
refer to as a reflectance disk is capturing using a unique
optical camera. The pixel coordinates of these reflectance
disks correspond to the surface viewing angles. The re-
flectance has class-specific stucture and angular gradients
computed in this reflectance space reveal the material class.
These reflectance disks encode discriminative information
for efficient and accurate material recognition. We intro-
duce a framework called reflectance hashing that models
the reflectance disks with dictionary learning and binary
hashing. We demonstrate the effectiveness of reflectance
hashing for material recognition with a number of real-
world materials.

1. Introduction
Color and geometry are not a full measure of the richness

of visual appearance. Material composition of a physical
surface point determines the characteristics of light interac-
tion and the reflection to an observer. In the everyday real
world there are a vast number of materials that are useful
to discern including concrete, metal, plastic, velvet, satin,
asphalt, carpet, tile, skin, hair, wood, and marble. A com-
putational method for identifying these materials has im-
portant implications in developing new algorithms and new
technologies for a broad set of application domains. For ex-
ample, a mobile robot or autonomous automobile can use
material recognition to determine whether the terrain is as-
phalt, grass, gravel, ice or snow in order to optimize me-
chanical control. An indoor mobile robot can distinguish
among wood, tile, or carpet for cleaning tasks. The material
composition of objects can be tagged for an e-commerce

(a) Leather Surface (b) Reflectance Disk (c) Texton Map

(d) Auto Paint Surface (e) Reflectance Disk (f) Texton Map

Figure 1: Reflectance disks provide a quick snapshot of the
intrinsic reflectance of a surface point. Gradients of the re-
flectance space are captured with textons and provide a sig-
nature for material recognition.

inventory or for characterizing multi-composite 3D printed
objects. The potential applications are limitless in areas
such as robotics, digital architecture, human-computer in-
teraction, intelligent vehicles, and advanced manufacturing.
Furthermore, just as computer vision algorithms now use
depth sensors directly from RGB-D cameras, material sen-
sors can have foundational importance in nearly all vision
algorithms including segmentation, feature matching, scene
recognition, image-based rendering, context-based search,
object recognition, and motion estimation. Our approach
uses reflectance for material recognition because of the ad-
vantages of having an intrinsic optical signature for the sur-
face. However, we bypass the use of a gonioreflectometer
by using a novel one-shot reflectance camera based on a
parabolic mirror design. The output of this camera is a re-
flectance disk, a dense sampling of the surface reflectance of
the material projected into a single image as shown for two



Figure 2: Reflectance disks provide a snapshot of the re-
flectance for spot samples on the surface. For this example
of a peacock feather, iridescence causes a large variation
of intensity with viewing direction as revealed in the three
reflectance disks.

example surfaces in Figure 1. Each reflectance disk mea-
sures surface properties for a single point and can capture
complex appearance such as the iridescence of a peacock
feather as illustrated in Figure 2. We then use this conve-
nient reflectance measurement as the discriminative charac-
teristic for recognizing the material class. We address the
issue of high dimensionality using a novel application of
binary hash codes to encode reflectance information in an
efficient yet discriminative representation. The key idea is
to obtain sufficient sampling of the reflectance with enough
discriminative power and reduce its representation size so
that it can be effectively used for probing the material.

We present a database of reflectance disks comprised of
twenty different diverse material classes including wood,
velvet, ceramic and automotive paint with 10 spot measure-
ments per surface and with three different surface instances
per class. Measurements include three on-axis illumination
angles (−10◦, 0◦, 10◦) and ten random spot measurements
over the surface. Each spot measurement is a reflectance
disk composed of a dense sampling of viewing angles total-
ing thousands of reflectance angles per disk. The database
of 3600 images or reflectance disks is made publicly avail-
able. For recognition, we combine binary hash coding
and texton boosting for a new framework called reflectance
hashing for efficient and accurate recognition of materials.
We compare reflectance hashing with texton boosting for
the task of recognizing materials from reflectance disks.

2. Related work
Prior methods for material recognition use two dis-

tinct approaches. One approach assesses material iden-
tity using reflectance as an intrinsic property of the sur-
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Figure 3: Schematic of the mirror-based camera. Re-
flectance disks are obtained by viewing a single point un-
der multiple viewing directions using a concave parabolic
mirror viewed by a telecentric lens.

face [5,13,17,19,26]. Another main approach identifies ma-
terial labels using the appearance of the surface within the
real world scene [21, 23, 34]. Using reflectance instead of
scene appearance has the advantage that reflectance is a di-
rect measurement of the material characteristics, instead of
its phenomenological appearance [1]. Reflectance is mostly
unique to the material, whereas the appearance is the con-
voluted end result of the interaction of all the intrinsic and
extrinsic factors and thus is more difficult to decipher.

A challenge in using reflectance for material recogni-
tion is that measurements are typically difficult and cumber-
some. For example, most methods require knowledge of the
scene like geometry [26, 27] or illumination [30, 31]. Other
methods require lab-based measurements of the BRDF
(bidirectional reflectance distribution function) or BRDF
slices such as light domes for illumination patterns [22].
Acquiring full BRDF requires gonioreflectometers that are
comprised of multiple cameras and light sources covering
the hemisphere of possible directions using geodesic domes
or robotics as in [8,9,20,28,29,45,46]. Surface appearance
in terms of relief texture is captured by the GelSight cam-
era [15] using three-color photometric stereo by imprinting
the surface geometry on an elastomer surface with Lamber-
tian skin. With this device very fine geometric texture can
be recovered but surface appearance is lost. An additional
challenge of using reflectance for measurements is the high
dimensionality, reflectance as a function of illumination and
viewing direction especially if densely sampled can lead to
thousands or more samples per surface point.

Specialized cameras have been developed in prior re-
search to obtain reflectance measurements of surfaces ef-
ficiently. The mirror-based camera illustrated in Figure 8
is one such a device [6, 7]. This camera views an image



Figure 4: Gradients on the Reflectance Disk Extracted with Textons: Images are filtered by a filter bank comprised of
Gaussian, Laplacian and oriented gradient filters. The 24× 1 responses vectors are clustered to form visual words or textons.
A random subsampling of rectangular subregions of the reflectance space defines regions of interest r. The feature of interest
is S(r, t), the count of pixels identified as texton t in region r.

of a single surface point by using a concave parabolic mir-
ror with the focus coincident with the target point. In this
manner, the camera records a multiview image of a surface
point where each pixel records a different angle. Multi-
ple views from mirror-based optics is also achieved with
a kaleidoscope-like configuration [14]. However, the view-
ing angles captured in this device are discrete and sparse.
Because our approach relies uses gradients in angular space
a dense sampling of reflectance is needed and we use the
parabolic mirror-based camera as a reflectance sensor.

In prior work, recognition of standard scene images is
typically accomplished using image features that capture
the spatial variation of image intensity. For example, image
filtering with a set of filter banks followed by grouping the
outputs into characteristic textons has been used for image
texture [4, 19, 40, 42], object recognition [35, 36] and im-
age segmentation [18]. Similarly, we encode the discrim-
inative optical characteristics of materials captured in the
reflectance disks with a texton-based representation. Tex-
ton methods for the general problem of scene and image
recognition have been improved significantly by incorpo-
rating boosting as in Texton-boost [36] and Joint-boost [38].
We incorporate the utility of boosting to identify a discrim-
inative and compact representation.

The goal of efficient recognition of images for large
scale search has led to numerous methods for binary hash
codes [2,16,24,25,44]. A common approach in recent work
[16,33,37,47] is learning binary codes where the Hamming
distance approximates the kernel distance between appear-

ance descriptors. This method is used when the kernel dis-
tance is known to give good performance but is expensive
to compute and store. Inspired by the work in image search,
we develop reflectance hashing with binary codes that al-
low matching of measured reflectance disks with those in
the labeled training set. The binary codes are learned using
the match metric obtained from the texton-based descrip-
tor we present in Section 3. We use a suite of state-of-the-
art hashing techniques applied to our measured reflectance
disk dataset to evaluate recognition performance in terms of
speed and recognition accuracy.

3. Methods
3.1. Reflectance Disk Measurements

We use the texture camera approach introduced in [6,
7, 41, 43] for measuring reflectance of surface points, The
measurement camera mainly consists of a parabolic mirror,
a CCD camera, a movable aperture and a beam splitter. The
imaging components and their arrangement are illustrated
in Figure 3. A parabolic mirror section is fixed so that its
focus is at the surface point to be measured. The illumi-
nation source is a collimated beam of light parallel to the
global plane of the surface and passing through a movable
aperture. The angle of the incident ray reaching the sur-
face is determined by the intersection point with the mir-
ror. Therefore, the illumination direction is determined by
the aperture position. Light reflected from the surface point
is reflected by the mirror to a set of parallel rays directed



Figure 5: Gradients on the reflectance disk are computed us-
ing image filtering. However, the angular resolution varies
over the surface as shown above. The angle at ab is differ-
ent from cd. Therefore differences (or filtering) computed
with a uniform spacing on the reflectance disk have a non-
uniform mapping to angles.

through a beam splitter to the camera. Each pixel of this
camera image corresponds to a viewing direction of the sur-
face point. Therefore, the recorded image is an observation
of a single point on the surface but from a dense sampling of
viewing directions. Multiple illumination directions can be
measured by planar motions of the illumination aperture. A
key advantage of this approach is the potential for a hand-
held reflectance sensor where the mirror and light source
are attached to a handheld camera.

We refer to the camera’s output images as reflectance
disks since they depict circular regions from on-axis projec-
tions of a paraboloid. Examples of these reflectance disks
are shown in Figure 1 for two surfaces. These examples
show the variation of the surface reflectance with viewing
angle. Reflectance disks have an intensity variation that
corresponds to angular change with the viewing direction
instead of spatial change on the surface. However, the re-
flectance disks can be interpreted as images and filtered to
find characteristic gradients. This approach of using angu-
lar gradients in reflectance space is a novel contribution of
our work. Our goal is to represent the measurements in an
efficient and meaningful way that supports material recog-
nition.

3.2. Textons on the Reflectance Disk

We find characteristic patterns of intensity in a re-
flectance disk by computing spatial change in the re-
flectance disk via image filtering. Since spatial coordinates
of the reflectance disk map to angular coordinates of re-
flectance, filtering is a convenient way to compute angular

gradients of the reflectance. A common method of quanti-
fying intensity patterns is using textons. Textons are com-
puted by first filtering the image with a set of gradient filters
at different orientations and scales. We employ the same fil-
ter banks as in [19], comprised of Gaussian low-pass filters
at four scales, Laplacian filters at four scales and eight gra-
dient filters at different orientations and scales for a total of
24 filters (ranging in size from 7 × 7 to 25 × 25). The re-
sulting 24 × 1 responses at each pixel are clustered using
K-means clustering and a dictionary of visual words called
textons is created. The underlying assumption is that the
local intensity variation can be captured with the finite set
of characteristic filter responses that are the centers of each
of the K clusters. Each pixel in the reflectance disk is as-
signed a texton label and the resulting label image is called
a texton map (as illustrated in Row 2 of Figure 6) .

We use textons as a reflectance feature to provide a
dense, per-pixel description of reflectance variation. Meth-
ods to detect key-points are useful for scene images, but
reflectance disks do not typically have specific key-points
of interest.

For texton computation, we use gradient filters that ap-
proximate the derivative operator with a discrete spatial dif-
ference filter. This discrete approximation of the gradient
computes change over a non-infinitesimal distance, typi-
cally the difference of neighboring pixels. The distance
between these neighboring pixels is constant over the re-
flectance disk, i.e. the same gradient filter is applied over the
entire disk image. However, because of the mapping from
spatial coordinates to angular coordinates by the parabolic
mirror, the angular distance is not constant. This situation
is illustrated in Figure 5 where the cone angle at the surface
is shown for two different locations on the parabolic mir-
ror. A constant distance d on the projected disk leads to two
different cone angles. Consequently, the resolution for the
angular gradient varies as a function of disk coordinates.

The equation of the parabolic mirror surface is given by,

y + F =
z2 + x2

4F
, (1)

where the y-axis is the optical axis of the mirror aligned
with the camera optical axis, the x− z plane is aligned with
the disk-shaped projection of the mirror surface on camera’s
image plane, and F is the mirror focal length (12.7 mm).
Define the cone angleα as the set of angles subtended by arc
ab or cd in Figure 5, where d is taken as 2 pixel units. From
this equation, the variation of the cone angle α as a function
of the vertical spatial coordinate z on the reflectance disk is
derived in [6] as

α(z) = arctan
z − 1

(z−1)2

4F − F
− arctan

z + 1
(z+1)2

4F − F
. (2)

Since the geometry of the mirror is known, the spatial fil-
ters can be adaptive to ensure a uniform cone angle over the
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Figure 6: Visualizing the reflectance-layout filters.The first row shows the reflectance disks for different materials. The second
row shows the corresponding texton maps. The third row shows three of the dominant region-texton (r, t) combinations
chosen for each class.

disk. However, the spatially invariant gradient filter pro-
vides a discriminative representation and uniformity of an-
gular resolution is not required.

Reflectance-Layout Filter Textons are a local measure
of image structure, and texton histograms are used to rep-
resent a region. The histogram representation has the ad-
vantage of invariance to shifts of structures. Reflectance
disks show the structure of the reflectance field, but of-
ten the distribution within that structure is the characteris-
tic property. Histogram representations have the drawback
that crucial spatial information is lost. We follow the tex-
ton boost framework [35, 36, 38] to encode the characteris-
tic spatial structure of the reflectance disk by defining a set
of randomly shaped rectangular regions over the disk. For
a given texton t and region r, S(r, t) is the count of pixels
labelled with texton t that are located within region r as il-
lustrated in Figure 4. We use this response as a key feature
for describing the reflectance disks. This response is re-
ferred to as the texture-layout filter response when applied
to ordinary images [36]. For material recognition using re-
flectance disks, we use the term reflectance-layout filter to
indicate that the representation captures the angular layout
of reflectance gradients. For computing reflectance-layout
filter responses, the number of particular textons in a re-
gion, the texton count is calculated using a soft-weighting
for the 8 nearest cluster centers. Soft-weighted textons as
in [18,36,39] allows each pixel to be associated with 8 near-
est clusters instead of a single texton label. This method
alleviates the problem of two similar responses assigned to
different texton labels.

Each reflectance layout filter characterizes a specific re-
gion in reflectance space where the change of reflectance as

a function of viewing angle is a descriptive feature for the
material. There are many possible combinations of (r, t) as
illustrated in Figure 4 and we want to choose the ones that
are most discriminative. The boosting approach in [35, 38]
is used to identify the most discriminative (r, t) combina-
tions. After boosting, the typical numbers of reflectance
layout filters is approximately 700.

3.3. Texton Boosting
The algorithm for Joint Boosting [38] provides feature

selection where the feature is the reflectance-layout filter
S(r, t) specified by a particular (r, t) pair that indicates
the number of times texton t occurs in region r. The
approach builds a strong learner iteratively by adding the
strongest weak learner which is based on the dominant fea-
ture at each iteration, allowing the weak learner to help
classify a subset of classes. At each step m, the method
maximally reduces the weighted squared error by choosing
the strongest weak learner hm(Ii, c), updating the strong
learner as: H(Ii, c) := H(Ii, c)+hm(Ii, c), where Ii is the
input image and c is the class. The weighted square error is
given by

Jwse =

C∑
c=1

N∑
i=1

wc
i (z

c
i − hm(Ii, c))

2, (3)

where C is number of classes, andN is the number of train-
ing samples, wc

i = e−zc
iH(Ii,c) defines the weights for class

c and sample i that emphasize the incorrectly classified sam-
ples for that iteration, zci is the membership label (±1) for
class c. The optimal solution that gives the selected learner
at step m has the form

hm(Ii, c) =

{
aδ(S(r, t) > θ) + b , if c ∈ Tm
kc , otherwise

(4)



with the parameters (a, b, kc, θ) given by the minimization
of Equation 3, δ(.) is an indicator function (0 or 1), S(r, t)
is the count or texton t in region r, Tm is the class subset
that share this feature. For the classes sharing the feature
(ci ∈ Tm), the weak learner gives h(Ii, c) ∈ {a + b, b}
determined by the comparison of reflectance-layout filter
response S(r, t) with the threshold θ. For the classes not
sharing the feature, there is a constant kc different for each
class c that avoids the asymmetry caused by the number of
positive and negative samples for each class.

This method chooses a dominant weak learner hm(Ii, c)
at each iteration to minimize the error function. For each
selected learner, finding the class subset T that maximally
reduces the error on weighted training set is expensive.
Instead of searching all possible 2C − 1 combinations, a
greedy search heuristic [38] is used to reduce the complex-
ity to O(C2). We first find the best feature for each single
class, and pick the class that has the best error reduction.
Then we add the class that has best joint error reduction
until we go through all the classes. Finally, we select the
set that provides the largest overall error reduction. It is
also time consuming to go through all the features at each
iteration, so only a fraction τ � 1 reflectance-layout fil-
ters are examined, randomly chosen in each iteration. The
bottom row of Figure 6 shows the selected dominant fea-
tures (reflectance-layout filters) for a number of different
reflectance disks

3.4. Reflectance Hashing

Boosting allows the selection of learners hm(Ii, c) that
specify (r, t) (region, texton) pairs of interest. The selected
learners can simply be viewed as the input feature vector
for a basic nearest neighbor classification. Nearest neigh-
bors in high dimensions is problematic, but the computa-
tional tools of binary hash codes enables efficient and ac-
curate representation. We use the reflectance layout filters
directly in a concatenated feature vector with 700× c com-
ponent where each component is a region-texton (r, t) pair
that is known to be useful in material recognition. There
is likely to be redundancy in the (r, t) combinations so the
number of components in the feature vector may be reduced
accordingly. This high dimensional feature vector is used
directly for fast computation by employing binary coding.
This efficiency is highly desirable for the embedded hard-
ware implementation.

We use a suite of state-of-the-art approaches for form-
ing binary code words including circulant binary em-
bedding (CBE) [49], bilinear embedding [10], iterative
quantization (ITQ) [12], angular quantization-based binary
codes(AQBC) [11], spectral hashing (SH) [48], locality sen-
sitive hash(LSH) [3], and locality-sensitive binary codes
from shift-invariant kernels (SKLSH) [32]. We refer to this
direct encoding and use of the reflectance layout filters as
reflectance hashing.

4. Experiments
Reflectance Disk Database To evaluate the perfor-

mance of our reflectance hashing framework, a database of
3600 reflectance disks is collected consisting of the follow-
ing 20 surface classes: cardboard, CD, cloth, feather, tex-
tured rubber, glossy ceramic, glossy metal, leather, linen,
mattel metal, automotive painting, non-ferrous metal, pa-
per, plastic, rock, rubber, sponge, velvet, glossy paper and
wood. The measurement camera shown in Figure 8 is
arranged as in Figure 3 with a video camera, telecentric
lens, light source, beam splitter and parabolic mirror. The
database includes 3 instances per class, i.e. three different
example surfaces per class, 10 spot samples per surface with
3 illumination directions (−10◦, 0, 10◦) where 0◦ is frontal
illumination aligned with the surface normal. Addition-
ally, two exposure settings are collected for each reflectance
disk. Therefore, the dataset consists of 180 reflectance disks
per class, for a total dataset of 3600 reflectance disks each
of size 320× 240. This reflectance dataset is made publicly
available.1

Material Recognition We compare the performance of
texton boosting with reflectance hashing for material classi-
fication. We compared the classification result with a train-
ing set of N random selected images for both methods, and
test the classification accuracy on a test set of 3600−N ran-
dom selected images. We vary N from 360 (10%) to 1500.
For the large set of training images, both methods perform
well; however, the recognition rate of joint boosting de-
creases significantly, when decreasing the size of training
set. Reflectance hashing gives a more stable recognition
rate as a function of the training set size as shown in Figure
9.

Figure 7 shows the confusion matrix from N = 360
classification with joint boosting with 700 iterations in the
training stage, and mean recognition rate of 84.38%. The
parameter settings were K = 512 textons and 200 subwin-
dows or regions, with the random feature selection fraction
τ = 0.01. Figure 10 shows the confusion matrix obtained
by our method of reflectance hashing, with the features se-
lected in 700 iterations, and using iterative quantization [12]
as the binary embedding method. The overall recognition
rate is 92.3%, and several individual class recognition rates
are significantly higher than the boosting method of Fig-
ure 7. For both methods, 5-fold cross validation was per-
formed.

We also make a baseline comparison with texton his-
togram classification where no boosting is done and no re-
gion subwindows are used. The histogram is computed over
the entire reflectance disk. The recognition rate with 1500
training images is 79.53% with a max rate of 100% (plas-
tic, glossy paper) and a minimum of 45.6% (sponge) The
recognition rate with 360 training images is 41.94% with a

1Available at http://www.ece.rutgers.edu/vision

http://www.ece.rutgers.edu/vision
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glossy paper 2.3 0.2 0.1 0.5 0.2 96.4 0.2
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Figure 7: Joint Boosting Classification. Confusion matrix with percentages row-normalized. Overall accuracy is 84.38%.

Figure 8: Prototype of the camera for reflectance disk cap-
ture. The components follow the arrangement in Figure 3.

max rate of 89.2% (cardboard) and a minimum of 18.3%
(linen).

From the empirical results, we see that reflectance hash-
ing provides reliable recognition even for a small training
set. This result has important implications for real time
material recognition since the approach may support online
training with compact training sets.

Evaluation of Binary Codes We compare the per-
formance of recent binary code methods for use in re-
flectance hashing. These codes are use to represent the
response from the reflectance-layout filters as described in
Section 3.4. We test the following binary embedding meth-
ods: randomized (CBE-rand) version of circulant binary
embedding (CBE) [49], randomized (BITQ-rand) version
of bilinear embedding [10], iterative quantization (ITQ)
[12], angular quantization-based binary codes(AQBC) [11],

Figure 9: Recognition rate as a function of training set size
for both boosting and reflectance hashing. Notice the per-
formance of reflectance hashing is high even when the train-
ing set number is low.

spectral hashing (SH) [48], locality-sensitive binary codes
from shift-invariant kernels (SKLSH) [32], and a baseline
method locality sensitive hash (LSH) [3]. CBE and BITQ
also have learned versions, but these are more appropriate
for higher dimensional data and longer bit code. Recogni-
tion is accomplished using a nearest neighbor search with a
Hamming distance metric and ten nearest neighbors. From
Figure 11, we see the binary embedding recognition rate
reaches around 90%, when using 128 or 256 bit binary
codes. The method of ITQ gives the best results for this
material recognition task.
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paper 0.5 2.2 95.2 0.6 0.4 1.1

plastic 99.7 0.3

rock 4.8 0.2 2.0 1.7 84.0 0.4 1.8 2.0 3.1

rubber 0.1 1.5 98.1 0.3

sponge 2.0 2.6 2.2 4.3 0.4 82.3 4.4 1.8

velvet 1.2 0.1 2.6 0.1 0.8 0.1 0.7 0.6 4.3 3.4 85.6 0.3

glossy paper 0.8 0.6 0.1 98.2 0.2

wood 7.4 0.5 0.3 5.3 0.7 0.5 0.1 85.2

Figure 10: Reflectance Hashing Classification. Confusion matrix with percentages row-normalized. Overall accuracy is
92.3%.
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Figure 11: Precision and recognition rate as a function of the number of bits for binary embedding with 10 nearest neighbors.

5. Summary and Conclusion

We have introduced a novel framework for measurement
and recognition of material classes. The approach encodes
high dimensional reflectance with a compact binary code.
We have compared several existing binary code methods to
choose the most appropriate for this material recognition
approach. The coding supports discrimination among the
classes and can be realized in embedded vision implementa-
tions. Our method of reflectance hashing is compared to two
popular baseline texton-based methods, boosting and tex-
ton histograms for material recognition. The results show

excellent performance even for small training sets and pro-
vide a novel method based on reflectance for fast sensing
and recognition of real-world materials.
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