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Abstract

In this work, we investigate the use of exemplar SVMs
(linear SVMs trained with one positive example only and
a vast collection of negative examples) as encoders that
turn generic image features into new, task-tailored features.
The proposed feature encoding leverages the ability of the
exemplar-SVM (E-SVM) classifier to extract, from the orig-
inal representation of the exemplar image, what is unique
about it. While existing image description pipelines rely on
the intuition of the designer to encode uniqueness into the
feature encoding process, our proposed approach does it ex-
plicitly relative to a “universe” of features represented by
the generic negatives. We show that such a post-processing
enhances the performance of state-of-the art image retrieval
methods based on aggregated image features, as well as the
performance of nearest class mean and K-nearest neigh-
bor image classification methods. We establish these ad-
vantages for several features, including “traditional” fea-
tures as well as features derived from deep convolutional
neural nets. As an additional contribution, we also propose
a recursive extension of this E-SVM encoding scheme (RE-
SVM) that provides further performance gains.

1. Introduction

Exemplar SVMs (E-SVMs), proposed by Malisiewicz
and Efros [21], are linear classifiers learned from a single
positive example, referred to as the exemplar, and a pool
N of generic examples that is used as the set of negative
examples. Despite several shortcomings of the approach
(see Section 2), exemplar SVMs have given good results
in a wide range of tasks requiring generalization in data-
constrained scenarios, e.g., [2, 20, 30]. This results from
the ability of the approach to extract, in the form of a lin-
ear classifier, what is unique about a specific image (given
a generic representation of it), relative to a universe of fea-
tures stemming from the task-tailored pool of negative ex-
amples. This is the property that we wish to leverage in our
work.

In this paper we propose to use E-SVM as an encod-
ing mechanism that turns generic image features into better

task-tailored representations (Fig. 1). In particular, our ap-
proach can be used to enhance the performance of state-of-
the art image retrieval methods such as those of [7, 9].

Extracting distinctive signatures from images, with sub-
sequent use for image comparison, retrieval or classifica-
tion, is the aim of feature encoder in existing image rep-
resentation pipelines. Such encoders, however, often rely
on the intuition of the designer. In contrast, our approach
performs this extraction explicitly relative to a universe of
features consistent with the targeted application.

Besides the utilization of basic E-SVMs as an encoding
mechanism, we also propose using E-SVM learning in a re-
cursive framework: An initial set of E-SVM features is ex-
tracted for the pool of generic negatives, and the process is
repeated a certain number of times by using the resulting E-
SVM features as input features in the subsequent recursion.
This method shares some lineage with the now widely pop-
ular deep approaches that appeared following the success
of [17]. As we shall demonstrate, encoding image features
with recursive E-SVM (RE-SVM) further improves image
search performance.

The rest of the paper is organized as follows: in Sec-
tion 2, related work on image representation and exemplar-
SVMs is discussed into more depth; We introduce proposed
E-SVM encoding method in Section 3, along with its use in
the context of image search and its recursive variant; Sec-
tion 4 is devoted to implementation details and to experi-
ments in the context of image retrieval; We outline several
perspective to this work in Section 5, before concluding.

2. Related work

2.1. Exemplar SVMs (E-SVMs)

Exemplar SVM have been introduced by Malisiewicz
and Efros [21] to address the task of learning a classifier
from a single positive exemplar and a set N of negative ex-
amples. For a given exemplar image, the approach produces
a linear classifier that captures distinctive aspects of the ex-
emplar relative to the ”universe” represented by the generic
negatives pool.

Training good exemplar SVMs requires that the generic
negative set N be very large, consisting of as many as
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Figure 1. Principle of E-SVM visual encoder. (Left) Given a generic visual encoder, like BoW, Fisher vector or VLAD, an image is
described as a fixed size feature vector x ∈ RD; (Right) Using a pool of generic negative image features N = {zi}Ni=1, an E-SVM w̃ is
learned for each input image. The `2-normalized E-SVM w is the new encoding of the image for subsequent analysis.

one million items [20]. Besides enhancing the discrimina-
tive power of the classifier, larger negative sets make the
training process stable relative to the choice of regulariza-
tion weights, as well as robust to the presence of eventual
false negatives in N . In order to make the training process
tractable, employing hard-negative mining [6, 8] as part of
the SVM learning process, which has been shown to con-
verge to the true solution [8], is a must. The process consists
of keeping a hard-negative cache that is a subset of N , and
alternately i) training a classifier using this hard-negatives
cache in place of N , and ii) growing the cache using ex-
amples fromN having a classification score inside the mar-
gin (i.e. greater than −1). Despite the use of hard negative
mining, the complexity required to train E-SVMs with the
requisite size of generic negative set is a shortcoming of the
approach.

A second shortcoming of E-SVMs is that, despite the
size of the negative set, there is only so much generaliza-
tion that can be extracted from a single positive exemplar
[2]. Indeed E-SVM-based approaches dealing with object
detection address this issue by producing extra positives
from each exemplar image patch by applying small trans-
formations (e.g. shifts, scaling) to it [30], effectively using
multiple positive examples.

Despite these shortcomings, exemplar SVMs have given
good results in a wide range of tasks requiring generaliza-
tion in data-constrained scenarios. Malisiewicz et al. [20]
proposed using E-SVMs to transfer meta-data (e.g. object
segmentation or pose information) from a set of annotated
exemplars to an unannotated set. Generic object detec-
tion has also been addressed using ensembles of E-SVMS,
where each E-SVM in the ensemble corresponds to one pos-
itive example of a given class. Using logistic regression-
based calibration makes it possible to compare the scores of
the various E-SVMs in the ensemble. The regression is car-
ried using as positives those items from the search database
for which the E-SVM returns the highest positive score,
similarly to approaches used in unsupervised mid-level fea-
ture discovery [32]. Shrivastava et al. [30] proposed using
E-SVMs for cross-domain search, where the exemplar is an
image in a given domain (e.g. a hand-drawn sketch, a paint-

ing or a photograph), and the targeted search images are
representations in a different domain. One of the applica-
tions considered in that work is image retrieval in the sense
of [14], where both the query image and the targeted search
images are photographs. This is the application considered
herein, but in their approach, an E-SVM is computed only
for the query image, and their method underperforms rel-
ative to approaches based on features tailored for the im-
age retrieval task. Another E-SVM based method [2] ad-
dresses the decreased generalization power resulting from
using a single positive exemplar by constraining the learned
E-SVM classifier to be close (under the `2 norm) to a lin-
ear combination of generic SVM classifiers. The resulting
approach gives improved performance relative to standard
E-SVMs in the task of pose-specific object retrieval.

In this paper we propose turning exemplar SVMs into
feature maps that can be used to post-process generic im-
age features. In the context of image search, this is un-
like previous E-SVM-based approaches which are asym-
metric in the sense that an exemplar SVM is learned only
for the query image and subsequently applied as a classi-
fier to the features extracted from the search database. For
image classification, our approach also differs from previ-
ous attempts to exploit E-SVMs in its way to deal with the
lack of generalization power [2] that is a consequence of
single-exemplar learning: When applied to classification,
our symmetric E-SVM approach overcomes this drawback
by leaving the task of generalization to a standard classifier
based on multiple positive and negative examples.

2.2. Ad-hoc and learned image representations

Common to both search and classification tasks is the
need to encode the image into a single, fixed-dimensional
feature vector. Many successful image feature encoders op-
erate on ad-hoc, fixed-dimensional local descriptor vectors
extracted from densely [5, 1] or sparsely [19, 23] sampled
local regions of the image. The feature encoder aggregates
these local descriptors to produce a higher dimension im-
age feature vector (Fig.1, left). Examples of such feature
encoders include the bag-of-words encoder [33], the Fisher
encoder [26] and the VLAD encoder [13, 14]. All these ag-



gregation methods depend on specific models of the data
distribution in the local-descriptor space that are learned
in an unsupervised task-independent manner. For bag-of-
words and VLAD, the model is a codebook obtained using
K-means, while the Fisher encoding is based on a Gaussian
Mixture Model (GMM). These pipelines have proved very
effective for a variety of image analysis tasks.

The approach we propose herein is a task-dependent
post-processing mechanism that can be applied to any of the
aggregated image features described above (Fig. 1, right).
In this respect, our method is similar to that of Tolias et al.
[35], wherein a kernel similar to the popular Hellinger ker-
nel is shown to provide a large improvement in the image
retrieval task. Yet their method is only established to per-
form well on very high dimensional base features that are
impractical in complexity constrained or large scale scenar-
ios.

Another interesting manner to make image encoding
task-dependent is to adapt, through appropriate learning,
some parts of the whole pipeline. This idea can be lever-
aged to learn local descriptors [4, 31] or the model used for
aggregation, e.g., GMM used in the Fisher encoding [34].
Approaches based on deep Convolutional Neural Networks
(CNNs)[17, 24] can also be interpreted as feature learning
methods, and these now define the new state-of-the art base-
line in semantic search. Our approach is different, and com-
plementary, in the sense that E-SVM encoder can be used
on top of any initial feature of interest, whether generically
engineered or already optimized according to one of the ap-
proaches mentioned above. We shall see, in particular, that
our approach can operate on CNN-based image represen-
tations. Another methodological difference lies in the fact
that, in our proposed approach, each individual image en-
coding must resort to its own learning routine. While this
obviously comes at a certain computational cost, it is triv-
ially parallelizable and is a source of great flexibility. Fur-
thermore, we show that the computational overhead is lower
than the computational cost of standard feature extractors
built by aggregating local descriptors.

Our approach is also somewhat related to so-called ex-
plicit feature maps [36] that embed original image fea-
ture vector into another space where dot product similar-
ity provides a good approximation of a given kernel of
interest. Such an explicit embedding is nonetheless task-
independent, being only driven by the choice of the kernel
and, it usually yields an increase of the original feature di-
mension. By contrast, our approach maps discriminatively
the input image feature to a new feature of identical dimen-
sion.

2.3. Methods based on deep Convolutional Neural
Networks (CNNs)

Starting with the eye-opening results of Krizhevsky,
Sutskever, and Hinton [17], deep Convolutional Neural Net-
works (CNNs) have become an important tool of the com-
puter vision researcher’s arsenal. CNN architectures can
be used as feature extractors by using the activation coeffi-
cients at the output of the first fully-connected layer directly
as a feature [28] or by combining CNNs with pyramid meth-
ods [10, 11] or other traditional approaches such as bag-of-
words or Fisher encoding [18]. One drawback with these
types of approaches is their large complexity, as a CNN ar-
chitecture consists of many tens of millions of coefficients.
Approaches such as that in [10] that further use the CNN
pipeline as a local feature extractor over a dense grid result
in astronomical complexity, restricting their applicability to
large scale settings considered herein. Yet their simplicty of
construction and performance make them pertinent research
methods.

3. Proposed approach
3.1. Feature encoding with E-SVMs

We assume that a generic, D-dimensional image feature
encoder is given. This base encoder can be global, based
on aggregated local features, or derived from CNNs-based
features. We shall denote by vectors in RD such features.
An exemplar SVM can be computed from the exemplar
feature vector x and a large set of generic feature vectors
N = {zi}Ni=1 by solving the following optimization prob-
lem:

w̃(x,N ) = argmin
w∈RD

[λ
2
‖w‖22 + α1 max(0, 1− x>w)

+ α−1

N∑
i=1

max(0, 1 + z>i w)
]
,

(1)

where λ, α1 and α−1 are positive parameters that control
the level of regularization and the relative weight of nega-
tive examples. For convenience, throughout we will we re-
fer to E-SVMs as the `2-normalized version of the solution
to the above problem:

w(x,N ) =
w̃(x,N )

‖w̃(x,N )‖2
. (2)

When dependence on x andN is clear from the context, we
shall simply denote w this E-SVM.

Optimization problem (1) is a classic linear SVM prob-
lem relying on hinge loss, with the notable particularity that
positive and negative sets are extremely unbalanced, one
positive for up to, say, one million negatives. In [21], the
property of hinge loss to yield dual solutions dependent only



on a small number of (negative) support vectors is leveraged
through hard negative mining. As an alternative efficient
solver, we shall rely on stochastic gradient descent (see de-
tails in Section 4.1).

We propose using E-SVMs thus computed as new fea-
tures. Hence we assume that we are given a first feature
encoder, task-dependent or not, that produces feature vector
x from a given image, but we instead use w(x,N ) as the
task-dependent feature representation for said image. Two
particular aspects of this encoding are worth emphasizing:

• While E-SVM is a linear SVM, the resulting encod-
ing, even before normalization, is obviously not linear
relative to base feature x;

• This is a dimension preserving encoding since the new
image representation still lives in RD. This is in stark
contrast with high-dimensional encoding using for in-
stance Fisher vectors [16] or explicit feature maps that
approximate infinite-dimensional kernel maps [36].

The proposed visual encoding approach is illustrated in
Fig. 1.

3.2. Symmetric encoding for image search

As demonstrated in [21], the E-SVM w◦ = w(x◦,N )
attached to a given image x◦ can be used on its own to re-
trieve images with very similar content in a dataset D =
{xj}Mj=1, using scores x>j w◦. We propose instead a sym-
metric approach where each image xj in the dataset is also
equipped with its E-SVM feature wj = w(xj ,N ). Our ap-
proach then consists in sorting all these according to their
similarity

sj = w>j w◦ (3)

with the E-SVM of the query image.

3.3. Recursive E-SVMs encoding

The above proposition of post-processing the output x
of any generic feature encoder to produce E-SVM features
w(x,N ) suggests applying this procedure recursively. We
can formalize this approach by first defining w0 , x and
N 0 , N . The k-th recursion of E-SVM feature computa-
tion can then be written as follows for k ≥ 1:

wk = w(wk−1,N k−1), (4)

where N k = {w(z,N k−1), z ∈ N k−1}. (5)

Features built using the k-th recursive E-SVM (RE-
SVM) procedure specified in (4) can be used in a manner
analogous to (3) to carry out image retrieval.

The recursive E-SVM feature construction approach in
(4) is reminiscent of deep architectures, popularized follow-
ing the success of [17], that use the output of a given layer as
the input to the subsequent layer. Unlike those approaches,

however, the feature in (4) is learned on a per-image basis
and in a completely un-supervised manner. Furthermore,
the computation of each wk is done by means of a single,
non-linear, convex problem, as opposed to the standard tan-
dem linear/non-linear arrangement used in each layer in ap-
proaches derived from [17].

4. Experiments

4.1. Implementation Details

Base visual encoding As our base image features, we use
a recent variant of the VLAD encoder [7] which is com-
puted by power-normalizing (element-wise sign(x)|x|0.2
operation) and `2 normalizing the following concatenated
vector: [

Φ>k
∑

s∈S∩Ck

s− ck
‖s− ck‖

]
k

, (6)

where S is the set of local descriptors extracted from the
image, the ck’s are codewords obtained usingK-means and
Φk is the local PCA basis obtained from the set S

⋂
Ck of

image local descriptors that lie in cell Ck associated to k-th
codeword. As in [7], we use a training set randomly chosen
from Flickr images and use local SIFT descriptors densely
extracted at three scales.

E-SVM computation We use the PEGASOS stochastic
gradient descent primal SVM solver [29, 3] to compute ex-
emplar SVMs, using a re-sampling strategy to implicitly
choose the penalty weights α1 and α−1 for the exemplar
and the negative pool. To illustrate the approach, we can
rewrite the objective in (1) as follows, where yi = −1,∀i =
1, . . . , N , yN+1 = 1, and we let zN+1 , x :

1

α1 +Nα−1

N+1∑
i=1

αyi
(λ
2
‖w‖2 +max(0, 1− yiz>i w)

)
.

(7)

The expectation over i of the gradient of the term inside the
summation can be controled by the α1, α−1 parameters, or
by using the exemplar every fp random draws from the neg-
ative pool during the SGD optimization, which we found to
converge faster. In order to add stability to the RE-SVM
representation, we use the same random ordering of the neg-
ative pool to compute all RE-SVM features. The resulting
implementation allows us to compute E-SVM features in
close to 600 ms for the longest SGD runtimes considered
(100, 000 iterations).

The synopsis of the algorithm is provided in Alg.1,
where we let 1a<b = 1 if a < b and 0 otherwise.



Algorithm 1. E-SVM feature encoding with PEGASOS.

1: Input: x, N = {zi}Ni=1, λ, T , fp
2: Initialize: set w1 = x
3: for t = 1, . . . , T do
4: if tmod fp 6= 0 then
5: Choose random z from N , without repetition
6: Set y = −1
7: else
8: Set z = x, y = 1
9: end if

10: Set wt+1 = wt − 1
λt (λwt − 1yz>w<1yz)

11: end for
12: Output: w = wT+1

‖wT+1‖
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Figure 2. Plot of mean Average Precision (mAP) on Holidays
dataset as a function of |N | when using T = 1e5 SGD iterations,
λ = 1, and fp = 10.

4.2. Image retrieval

Datasets and protocol We evaluate our algoritm on two
publicly available datasets, Holidays [12] and Oxford [27].
The Holidays dataset consists of 1491 images of vacation
shots divided into 500 groups of matching images. The sec-
ond dataset, the Oxford dataset, consists of close to 5000
images of buildings from the city of Oxford. The images are
divided into 55 groups of matching images, and a query im-
age is specified for each group. We use the full image as the
query image instead of the cropped region. Both datasets
include a specfic evaluation protol based on mean Average
Precision (mAP) that we use throughout.

Effect of parameters In Figs. 2-5 we evaluate the effect
of the RE-SVM encoding parameters on mAP performance
on the Holidays dataset.

In Fig. 2, we evaluate the effect of the negative pool size
N on the performance of the system and observe that the
performance increases with larger negative pools. In latter
experiments we fix the pool size to N = 60e3. Using larger
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Figure 3. mean Average Precision (mAP) on Holidays dataset as
a function of the number T of SGD iterations when using |N | =
1e4 or |N | = 6e4, λ = 1 and fp = 10.
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Figure 4. mean Average Precision (mAP) on Holidays dataset as
a function of the number r of RE-SVM recursions when using
N = 60e3, T = 1e5 SGD iterations, λ = 1, and fp = 10. The
point for r = 0 corresponds to the baseline using VLAD-64.
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Figure 5. Mean Average Precision (mAP) on Holidays dataset as
a function of the exemplar re-sampling rate fp when using N =
60e3, T = 1e5 SGD iterations and λ = 1.

pools could indeed increase the system performance, but
this is at the expense of a larger encoder memory footprint
and exploiting larger pools further requires longer SGD run-
times.



Iterations 1e3 10e3 100e3
Run-time 10 ms 70 ms 620 ms

Table 1. E-SVM encoding runtime when using a single core run-
ning at 2.6 GHz.

In Fig. 3, we evaluate the effect of the number of SGD
iterations for two different pool sizes (N = 10e3 and 60e3).
For our pool size of 60e3, the benefit of increasing the
number T of iterations saturates after 100e3 iterations, and
hence we use T = 100e3 iterations in latter experiments.
In Table 1 we provide runtimes for E-SVM learning and
show that using 100e3 iterations takes 620 ms with our non-
optimized C implementation.

In Fig. 4, we evaluate the merit of recursively training
RE-SVMs, as discussed in Section 3. We plot RE-SVM re-
sults when using r recursions (referred to as RE-SVM-r),
for r = 0, ..., 6, where r = 0 refers to the baseline results
obtained with the VLAD encoder. A single RE-SVM recur-
sion produces a gain of close to 4 mAP points relative to the
VLAD encoder, and using 6 recursions produces a gain of
close to 5 points. Since most of the gain is obtained by using
only 2 recursions, we will use r = 2 in latter experiments.

In Fig. 5 we evaluate the effect of varying the exemplar
sampling rate during the SGD optimization process. Note
that any value between fp = 1 and fp = 400 results in an
improvement relative to the baseline VLAD encoder. This
is consistent with the findings of [21] concerning the robust-
ness of E-SVMs to choice of balancing weights. In latter
experiments we will use a value of fp = 30.

Large scale experiments In Fig. 6 and Fig. 7 we evaluate
the robustness of our method to the addition of a large num-
ber of distractor images from Flickr different from those
used for the negative pool. The distractor images are en-
coded in the same manner as the benchmark images using
VLAD + RE-SVM-2. The parameters used for both RE-
SVM recursions (see Alg.1) are

N = 60e3, T = 100e3, and fp = 30, (8)

according to the discussion that followed evaluations on the
Holidays dataset. Note that the same parameters selected
on Holidays also give an important improvement in the Ox-
ford dataset. Moreover, this improvement is constant over
the entire range of distractor images considered. For the
Holidays dataset, the improvement is in excess of 5 mAP
points for the entire range of distractor images. For the Ox-
ford dataset, the improvement is in excess of 10 mAP points
likewise for the entire range of distractor images.

Applicability of RE-SVMs to other base features In or-
der to test the applicability of our method to generic fea-
tures, we also carry out experiments using bag-of-words

[33] and the Fisher vector [25], both computed over densely
extracted local SIFT descriptors.

The Bag-of-Words (BoW) feature is based on a code-
book {ck}k and is obtained by `2 normalizing the following
histogram of quantized local descriptors,

[|S ∩ Ck|]k , (9)

where S represents the set of local descriptors extracted
from the image and Ck is the Voronoi cell associated to
codeword ck. We build BoW features using a codebook
size of 1000.

The Fisher encoding is based on a Gaussian mixture
model of the local descriptor space. We use the `2 normal-
ized version of the first order variant given by[∑

s∈S

p(k|s)√
βk

Σ−1k (s− ck)

]
k

, (10)

where βk, ck and Σk denote, respectively, the k-th mixture
component prior weight, mean vector and correlation ma-
trix (constrained to be diagonal). We use 64 mixture com-
ponents in our experiments.

In Table 2, we illustrate the performance of the base
VLAD-64, BoW-1000 and Fisher-64 encodings on the Hol-
idays and Oxford benchmarks, along with the performance
of the RE-SVM-1 and RE-SVM-2 features derived from
each encoding. As illustrated in the table, even a single
RE-SVM recursion gives a large boost to all three encod-
ings. The Fisher vector, in particular, performs poorly ini-
tially, but gains as many as 35 mAP points (on the Holidays
dataset) after two RE-SVM recursions to outperform BoW.

We also compare against the CNN-based method pro-
posed by [28], as well as our own, better-performing im-
plementation of their system based on CAFFE [15]. Their
approach consists of using the activation coefficients from a
fully connected layer of a deep CNN architecture as an im-
age feature for retrieval. In order to focus on the discerning
power of the feature, we neglect voting and augmentation
mechanisms [28] that are orthogonal to the specific feature
construction method, and which have the adverse effect of
increasing system complexity and feature dimensionality.
As shown in the table, our system also gives an important
advantage (3.6 mAP points) when using such CNN-based
features as base features.

In Fig. 8 and Fig. 9 we show, respectively, exam-
ple queries for which our proposed approach improves and
worsens the rank of a matching image. Note that the ex-
amples of worsened performance in Fig. 9 contain mostly
image pairs in different vertical/horizontal disposition. We
believe that such cases could be easily addressed using a
positive set obtained by applying to the exemplar, sim-
ple transformations including rotations, mirroring, displace-
ment, cropping, and potentially others.
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λ = 1, and fp = 30.

4.3. Image Classification

In Table 3 we test our method in the Pascal VOC image
classification task when using either Nearest Class Mean
(NCM) or K-Nearest Neighbors (K-NN) classifiers, show-
ing improvements of close to 4 mAP points for the NCM
classifier and up to 2 mAP points for the K-NN classifier.
NCM and K-NN classifiers have the important advantage
that new classifiers can be added at near zero cost [22], con-
trary to one-vs-rest approaches using linear classifiers that
require that the classifiers for all classes be updated period-
ically when adding new classes. NCM in particular further
enjoys a very low testing cost. We also tested our approach
using linear classifiers and found that the RE-SVM-1 vari-
ant resulted in a negligible drop in performance of< 1 mAP
point.

5. Conclusion

In this work we proposed using Exemplar Support Vector
Machines (E-SVMs) as an image feature encoder applica-

Holidays Oxford 5K
VLAD-64 72.7 46.3

VLAD-64 + RE-SVM-1 77.5 55.5
VLAD-64 + RE-SVM-2 78.3 57.5

Fisher-64 18.2 9.27
Fisher-64 + RE-SVM-1 59.8 27.7
Fisher-64 + RE-SVM-2 63.6 31.5

BoW-1000 38.6 17.0
BoW-1000 + RE-SVM-1 44.5 20.5
BoW-1000 + RE-SVM-2 49.1 25.5

CNN [28] 64.2 32.2
CNN [15] 68.2 40.6

CNN [15] + RE-SVM-1 71.3 43.9
CNN [15] + RE-SVM-2 71.8 44.6

Table 2. Results for VLAD, BoW, Fisher and CNN encodings and
their RE-SVM-1 and RE-SVM-2 variants.

Classifier CNN [15] + RE-SVM-1
NCM 51.8 55.5
K-NN 3 60.7 62.2
K-NN 5 65.7 66.5
K-NN 10 68.9 69.8

Table 3. Results (mAP) on the Pascal VOC image classification
task when using CNN [15] as a base feature.

ble to generic image features such as VLAD, Fisher, Bag-
of-Words and CNN-derived features. Our approach is in
contrast to existing approaches that compute E-SVMs only
from one image and use the resulting E-SVM as a classifier
applied to features of the original representation. We fur-
ther propose computing E-SVMs recursively from E-SVM
encoded features, an approach we refer to as Recursive Ex-
emplar SVMs (RE-SVMs).

We test our method on the image retrieval task using a
variety of features and show that it can give an improvement
of as much as 5 points in mean Average Precision (mAP)
relative to high-performing VLAD encodings. We further
carry out large scale tests with large numbers of distractor
images equally represented using RE-SVMs and show that
our performance gain is robust to distractor images. We fur-
ther show that our proposed method has wider applications
in the image classification task, and we believe wider ap-
plications are possible, including image-related tasks such
as registration but also generic tasks that require fixed-
dimensional feature representations.
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47→ 4 92→ 29 235→ 10

40→ 2 431→ 395 30→ 1

Figure 8. Select images that get ranked better when using the RE-SVM-2 encoding than when using VLAD-64. For each pair, the left
image is the query and the right image is a match, with the change in rank indicated below the match.

375→ 618 123→ 174 411→ 1061

52→ 333 185→ 755 32→ 1006

Figure 9. Select images that get ranked worse when using the RE-SVM-2 encoding than when using VLAD-64. For each pair, the left
image is the query and the right image is a match, with the change in rank indicated below the match.
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