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Figure 1: Example of a car search using our method.

Modern object class detectors [2, 4, 5, 8] partition the image into a
set of windows and then score each window with a classifier to determine
whether it contains an instance of the object class. In the classical sliding
window approach [2, 4], the window set is very large, containing hundred
of thousands of windows on a regular grid at multiple scales. This approach
is prohibitively expensive for slow, powerful window classifiers which are
state-of-the-art nowadays [5, 8], such as Convolutional Neural Networks
(CNN) [5]. For this reason, these detectors are based instead on object
proposal generators [1, 7, 8], which provide a smaller set of a few thou-
sand windows likely to cover all objects. Hence, this reduces the number
of window classifier evaluations required. However, in both approaches the
window classifier evaluates all windows in the set, effectively assuming that
they are independent.

In this work, we propose an active search strategy that sequentially
chooses the next window to evaluate based on previously observed windows,
rather than going through the whole window set in an arbitrary order. Ob-
serving a window not only provides information about the presence of the
object in that particular window, but also about its surroundings and even
distant areas of the image. Our search method extracts this information and
integrates it into the search, effectively guiding future observations to inter-
esting areas, likely to contain objects. This results in a more natural and
elegant way of searching, avoiding wasteful computation in uninteresting
areas and focusing on the promising ones. As a consequence, our method
is able to find the objects while evaluating much fewer windows, typically
only a few hundreds.

We use two guiding forces in our method: context and window classi-
fier score. Context exploits the statistical relation between the appearance
and location of a window and its location relative to the objects, as observed
in the training set. For example, the method can learn that cars tend to be
on roads below the sky. Therefore, observing a window in the sky in a test
image suggests the car is likely to be far below, whereas a window on the
road suggests making a smaller horizontal move. We learn the context force,
in a Random Forest framework that provides great computational efficiency
as well as accurate results. The classifier score of an observed window pro-
vides information about the score of nearby windows, due to the smoothness
of the classifier function. It guides the search to areas where we have ob-
served a window with high score, while pushing away from windows with
low score. Observing a window with part of a car, for example, will attract
the search to its surroundings. Our method effectively combines these two
forces.

Fig. 1 shows the intuition of our method on detecting cars. It starts at
window w0 and it moves away immediately, since w0 contains a piece of
building, not a car. Context determines the direction of the move, as cars
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Figure 2: (a) Our search method in action. (b) Results of our method tested on
SUN2012 using R-CNN as window classifier. Baseline: evaluation of proposals in
arbitrary order.

tend to be on streets below buildings. Hence, the next visited location is
on the road. After observing w1, the method continues searching along the
road, as indicated by context. For window w2, however, the score of the
classifier is rather high, as it contains a piece of car. Therefore, the search
focuses around this area until it finds a tight window on the car.

Experiments on the challenging SUN2012 dataset [9] and PASCAL
VOC10 [3] demonstrate that our method explores the image in an intelligent
way, effectively detecting objects in only a few hundred iterations. Fig. 2(a)
presents an example of our search method in action. Our method can be ap-
plied on top of any classifier, we use the state-of-the-art R-CNN [5] and the
popular UvA Bag-of-Words model of [8], both using of object proposals [8].
For R-CNN on SUN2012, our search strategy matches the detection accu-
racy of evaluating all proposals independently, while evaluating 9× fewer
proposals on average, as we can see in fig. 2 (b). As our method adds little
overhead, this translates into an actual wall-clock speedup. When comput-
ing CNN features on the CPU [6], the processing time for one test image re-
duces from 320s to 36s (9× speed-up). When using a GPU, it reduces from
14.4s to 2.5s (6× speed-up). Hence, our method opens the door to using ex-
pensive classifiers by considerably reducing the number of evaluations while
adding little overhead. For the UvA window classifier, our search strategy
only needs 35 proposals to match the performance of evaluating all of them
(a reduction of 85×). By letting the search run for longer, we even improve
accuracy while evaluating 30× fewer proposals, as it avoids evaluating some
cluttered image areas that might lead to false-positives.
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