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Abstract

Artificial agents today can answer factual questions. But
they fall short on questions that require common sense rea-
soning. Perhaps this is because most existing common sense
databases rely on text to learn and represent knowledge.
But much of common sense knowledge is unwritten – partly
because it tends not to be interesting enough to talk about,
and partly because some common sense is unnatural to ar-
ticulate in text. While unwritten, it is not unseen. In this pa-
per we leverage semantic common sense knowledge learned
from images – i.e. visual common sense – in two textual
tasks: fill-in-the-blank and visual paraphrasing. We pro-
pose to “imagine” the scene behind the text, and leverage
visual cues from the “imagined” scenes in addition to tex-
tual cues while answering these questions. We imagine the
scenes as a visual abstraction. Our approach outperforms a
strong text-only baseline on these tasks. Our proposed tasks
can serve as benchmarks to quantitatively evaluate progress
in solving tasks that go “beyond recognition”. Our code
and datasets are publicly available.

1. Introduction
Today’s artificially intelligent agents are good at answer-

ing factual questions about our world [10, 16, 46]. For
instance, Siri1, Cortana2, Google Now3, Wolfram Alpha4

etc., when asked “How far is the closest McDonald’s to
me?”, can comprehend the question, mine the appropri-
ate database (e.g. maps) and respond with a useful answer.
While being good at niche applications or answering factual
questions, today’s AI systems are far from being sapient in-
telligent entities. Common sense continues to elude them.

Consider a simple fill-in-the-blank task shown in Fig-
ure 1 (left). Answering this question requires the common
sense that bears are dangerous animals, people like to stay

1https://www.apple.com/ios/siri/
2http://www.windowsphone.com/en-us/how-to/wp8/

cortana/meet-cortana
3http://www.google.com/landing/now/
4http://www.wolframalpha.com/

Mike is having lunch 
when he sees a bear. 
__________________.

A. Mike orders a pizza.

B. Mike hugs the bear.

C. Bears are mammals.

D. Mike tries to hide.

1. Mike had his baseball 
bat at the park. Jenny 
was going to throw her 
pie at Mike. Mike was 
upset he didn’t want 
Jenny to hit him with a 
pie.

2. Mike is holding a bat. 
Jenny is very angry. 
Jenny is holding a pie.

Visual Paraphrasing: 	  Fill-in-the-blank:
Are these two descriptions 
describing the same scene?

Figure 1. We introduce two tasks: fill-in-the-blank (FITB) and vi-
sual paraphrasing (VP). While they seem like purely textual tasks,
they require some imagination – visual common sense – to answer.

away from and not be noticed by dangerous animals, and
hiding is one way of going unnoticed. Similarly, consider
the visual paraphrasing question in Figure 1 (right). An-
swering this question involves common sense that people
might throw things when they are angry and in order to
throw something, you need to be holding it. Today’s sys-
tems are unable to answer such questions reliably.

Perhaps this is not surprising. Most existing common
sense knowledge bases rely on knowledge described via
text – either mined [6, 26, 31] or manually entered [37,
44, 5, 45]. There are a few short-comings of learning com-
mon sense from text. First, it has been shown that people
tend not to explicitly talk about common sense knowledge
in text [20]. Instead, there is a bias to talk about unusual
circumstances, because those are worth talking about. Co-
occurrence statistics of visual concepts mined from the web
has been shown to not generalize to images [35]. Even when
describing images, text is likely to talk about the salient
“foreground” objects, activities, etc. But common sense
reveals itself even in the “background”. Second, much of
useful common sense knowledge may be hard to describe
in text. For instance, the knowledge that “one person is run-
ning after another person” implies that the first person is

1

https://www.apple.com/ios/siri/
http://www.windowsphone.com/en-us/how-to/wp8/cortana/meet-cortana
http://www.windowsphone.com/en-us/how-to/wp8/cortana/meet-cortana
http://www.google.com/landing/now/
http://www.wolframalpha.com/


facing the second person, the second person is looking in
the same direction as the first person, and both people are in
running poses, is unnatural (and typically unnecessary) to
articulate in text.

Fortunately, much of this common sense knowledge is
depicted in our visual world. We call such common sense
knowledge that can be learnt from visual data visual com-
mon sense. By visual common sense we do not mean visual
models of commonly occurring interactions between ob-
jects [11] or knowledge of visual relationships between ob-
jects, parts and attributes [9, 50]. We mean semantic com-
mon sense, e.g. the knowledge that if one person is running
after another person, and the second person turns around,
he will see the first person. It can be learnt from visual data
but can help in a variety of visual and non-visual AI tasks.
Such visual common sense is complementary to common
sense learnt from non-visual sources.

We argue that the tasks shown in Figure 1 may look
like purely text- or language-based tasks on the surface, but
they can benefit from visual common sense. In fact, we
go further and argue that such tasks can provide exciting
new benchmarks to evaluate image understanding “beyond
recognition”. Effectively learning and applying visual com-
mon sense to such tasks involves challenges such as ground-
ing language in vision and learning common sense from vi-
sual data – both steps towards deeper image understanding
beyond naming objects, attributes, parts, scenes and other
image content depicted in the pixels of an image.

In this work we propose two tasks: fill-in-the-blank
(FITB) and visual paraphrasing (VP) – as seen in Figure 1
– that can benefit from visual common sense. We propose
an approach to address these tasks that first “imagines” the
scene behind the text. It then reasons about the generated
scenes using visual common sense, as well as the text using
textual common sense, to identify the most likely solution
to the task. In order to leverage visual common sense, this
imagined scene need not be photo-realistic. It only needs to
encode the semantic features of a scene (which objects are
present, where, what their attributes are, how they are inter-
acting, etc.). Hence, we imagine our scenes in an abstract
representation of our visual world – in particular using cli-
part [51, 52, 18, 1].

Specifically, given an FITB task with four options, we
generate a scene corresponding to each of the four descrip-
tions that can be formed by pairing the input description
with each of the four options. We then apply a learnt model
that reasons jointly about text and vision to select the most
plausible option. Our model essentially uses the generated
scene as an intermediate representation to help solve the
task. Similarly, for a VP task, we generate a scene for each
of the two descriptions, and apply a learnt joint text and vi-
sion model to classify both descriptions as describing the
same scene or not. We introduce datasets for both tasks.
We show that our imagination-based approach that lever-

ages both visual and textual common sense outperforms the
text-only baseline on both tasks. Our datasets and code are
publicly available.

2. Related Work

Beyond recognition: Higher-level image understand-
ing tasks go beyond recognizing and localizing objects,
scenes, attributes and other image content depicted in the
pixels of the image. Example tasks include reasoning about
what people talk about in images [4], understanding the
flow of time (when) [39], identifying where the image is
taken [24, 28] and judging the intentions of people in im-
ages (why) [40]. While going beyond recognition, these
tasks are fairly niche. Approaches that automatically pro-
duce a textual description of images [22, 14, 29] or synthe-
size scenes corresponding to input textual descriptions [52]
can benefit from reasoning about all these different “W”
questions and other high-level information. They are se-
mantically more comprehensive variations of beyond recog-
nition tasks that test high-level image understanding abili-
ties. However, these tasks are difficult to evaluate [29, 13]
or often evaluate aspects of the problem that are less rele-
vant to image understanding e.g. grammatical correctness of
automatically generated descriptions of images. This makes
it difficult to use these tasks as benchmarks for evaluating
image understanding beyond recognition.

Leveraging visual common sense in our proposed FITB
and VP tasks requires qualitatively a similar level of image
understanding as in image-to-text and text-to-image tasks.
FITB requires reasoning about what else is plausible in a
scene given a partial textual description. VP tasks on the
other hand require us to reason about how multiple descrip-
tions of the same scene could vary. At the same time, FITB
and VP tasks are multiple-choice questions and hence easy
to evaluate. This makes them desirable benchmark tasks for
evaluating image understanding beyond recognition.

Natural language Q&A: Answering factual queries in
natural language is a well studied problem in text retrieval.
Given questions like “Through which country does the
Yenisei river flow?”, the task is to query useful informa-
tion sources and give a correct answer for example “Mon-
golia” or “Russia”. Many systems such as personal assistant
applications on phones and IBM Watson [16] which won
the Jeopardy! challenge have achieved commercial success.
There are also established challenges on answering factual
questions posed by humans [10], natural language knowl-
edge base queries [46] and even university entrance exams
[38]. The FITB and VP tasks we study are not about facts,
but common sense questions.

[19, 34] have addressed the task of answering questions
about visual content. The questions and answers often come
from a closed world. [42] introduces self-contained fic-
tional stories and multiple choice reading comprehension



questions that test text meaning understanding. [47] models
characters, objects and rooms with simple spatial relation-
ships to answer queries and factual questions after reading
a story. Our work can be seen as using the entire scene as
the “meaning” of text.

Leveraging common sense: Common sense is an im-
portant element in solving many beyond recognition tasks,
since beyond recognition tasks tend to require information
that is outside the boundaries of the image. It has been
shown that learning and using non-visual common sense
(i.e. common sense learnt from non-visual sources) benefits
physical reasoning [23, 49], reasoning about intentions [40]
and object functionality [50]. One instantiation of visual
common sense that has been leveraged in the vision com-
munity in the past is the use of contextual reasoning for im-
proved recognition [22, 12, 21, 17, 25, 50]. In this work, we
explore the use of visual common sense for seemingly non-
visual tasks through “imagination”, i.e. generating scenes.

Synthetic data: Learning from synthetic data avoids
tedious manual labeling of real images. It also provides
a platform to study high-level image understanding tasks
without having to wait for low-level recognition problems
to be solved. Moreover, synthetic data can be collected in
large amounts with high density without suffering from a
heavy-tailed distribution, allowing us to learn rich models.
Previous works have looked at learning recognition models
from synthetic data. For instance, computer graphics mod-
els were used to synthesize data to learn human pose [43],
chair models [2], scene descriptions and generation of 3D
scenes [8]. Clipart data has been used to learn models of
fine-grained interactions between people [1]. [32] warps
images of one category to use them as examples for other
categories. [27] uses synthetic images to evaluate low-level
image features. Human-created clipart images have been
used to learn which semantic features (object presence or
co-occurrence, pose, expression, relative location, etc.) are
relevant to the meaning of a scene [51] and to learn spatio-
temporal common sense to model scene dynamics [18]. In
this work, we learn our common sense models from human-
created clipart scenes and associated descriptions. We also
use clipart to “imagine” scenes in order to solve the FITB
and VP tasks. Though the abstract scenes [51, 8] are not
photo-realistic, they offer a semantically rich world where
one can effectively generate scenes and learn semantic vari-
ations of sentences and scenes, free from the bottlenecks of
(still) imperfect object recognition and detection. Despite
being synthetic, it has been shown that semantic concepts
learnt from abstract scenes can generalize to real images [1].

3. Dataset

We build our FITB and VP datasets on top of the Ab-
stract Scenes Dataset [51], which has 10,020 human-created
abstract scenes of a boy and a girl playing in the park. The

dataset contains 58 clipart objects including the boy (Mike),
the girl (Jenny), toys, background objects like trees and
clouds, animals like dogs and cats, food items like burg-
ers and pizzas, etc. A subset of these objects are placed
in the scene at a particular location, scale, and orientation
(facing left or right). The boy and the girl can have differ-
ent poses (7) and expressions (5). Each one of the 10,020
scenes has textual descriptions written by two different peo-
ple. We use this clipart as the representation within which
we will “imagine” our scenes. We also use this dataset to
learn visual common sense. While more clipart objects, ex-
pressions, poses, etc. can enable us to learn more compre-
hensive visual common sense, this dataset has been shown
to contain semantically rich information [51, 52], sufficient
to begin exploring our proposed tasks. We now describe our
approach to creating our FITB and VP datasets.

3.1. Fill-in-the-blank (FITB) Dataset
Every description in the Abstract Scenes Dataset con-

sists of three short sentences, typically describing differ-
ent aspects of the scene while also forming a coherent de-
scription. Since we have two such descriptions for every
scene, we arbitrarily place one of the two descriptions (for
all scenes) into the source set and the other into the distrac-
tor set. For each image, we randomly drop one sentence
from its source description to form an FITB question. We
group this dropped sentence with 3 random sentences from
descriptions of other images in the distractor set. The FITB
task is to correctly identify which sentence in the options
belongs to the original description in the question.

Removing questions where the NLP parser produced de-
generate outputs, our resulting FITB dataset contains 8,959
FITB questions – 7,198 for training and 1,761 for test-
ing. Figure 3 shows one example FITB question from our
dataset. The scenes corresponding to the questions in the
training set are available for learning visual common sense
and text-image correspondence. The scenes corresponding
to the test questions are not available at test time.

FITB is a challenging task. Many scenes share the same
visual elements such as Mike and Jenny playing football.
Sometimes the distractor options may seem just as valid
as the ground truth option, even to humans. We conduct
studies on human performance on the test set. We had 10
different subjects on Amazon Mechanical Turk (AMT) an-
swer the FITB questions. To mimic the task given to ma-
chines, subjects were not shown the corresponding image.
We found that the majority vote response (i.e. mode of re-
sponses) across 10 subjects agreed with the ground truth
52.87% of the time (compared to random guessing at 25%).

Some questions may be generic and ambiguous and can
lead to disagreements among the subjects, while other ques-
tions have consistent responses across subjects. We find that
41% of the questions in our dataset have 7 or more subjects
agreeing on the response. Of these questions, the mode of
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Figure 2. Human performance vs. inter-human agreement on the
FITB task. Mode of human responses is more accurate when sub-
jects agree with each other.

the responses across subjects agrees with the ground truth
69% of the time. Interestingly, on the remaining 31% of the
questions, 7 out of 10 subjects agree on the wrong response.
This happens because often the distracting options happen
to describe the original image well, or their writing style
matches that of the question. In our experiments, we report
accuracies relative to the ground truth response, as well as
relative to the response that most subjects agree on (the lat-
ter might be more relevant from an AI perspective – if the
goal is to produce human-like responses).

In Figure 2, we consider different subsets of the dataset
formed by only considering questions where a certain mini-
mum proportion of subjects agreed on the response (human
agreement). For each subset, we can evaluate the accuracy
of the mode response. We also look at what percentage of
the dataset falls in each subset. Not surprisingly, human ac-
curacy (mode agreeing with ground truth) correlates well
with human agreement (percentage of subjects that agree
with mode). Note that even if responses were random, on
average 43% of subjects would agree on the mode response.

3.2. Visual Paraphrasing (VP) Dataset

The VP task is to tell if two descriptions are describing
the same scene or two different scenes. The correct answer
to a pair of descriptions written by two people describing
the same scene is “Yes”, while to randomly drawn descrip-
tions from two different scenes is “No”.

We build our VP dataset using all 10,020 scenes from the
Abstract Scenes Dataset, resulting in a dataset with 10,020
positive pairs. We randomly sample 2 ×10,020 pairs as
negatives. This leads to a total of 30,060 questions in our
dataset. Of these, 24,000 are used for training and the rest
6,060 are used for testing. We choose the negative pairs
separately in training and testing sets such that they do not
overlap with each other. Figure 4 shows one example VP
question from our dataset.

We evaluate human performance on our test set. We had
10 different subjects on AMT solve our tasks. We average
their responses (0 for No and 1 for Yes) to obtain a score

between 0 and 1 for each question. We can use this score
to plot a precision-recall curve. Results show that humans
can reliably solve this task with 94.78% average precision
(AP), compared to chance at 33%.

FITB and VP tasks are ways to evaluate visual common
sense. Some applications of FITB tasks may be automatic
story telling and automatic Q&A. Some applications of the
VP task may be text-based image retrieval and generating
multiple diverse descriptions of the same image.

4. Approach
We first describe the strong baseline approach of using

textual features (common sense) to solve the FITB and VP
tasks in Section 4.1. We then describe our visual common
sense model (Section 4.2.2) and scene generation approach
(Section 4.3). Finally in Section 4.4 we describe our ap-
proach to using our model to solve the FITB and VP tasks.

4.1. Text Only Model
We first tokenize all words in our dataset and form a

vocabulary (1,886 words for the FITB dataset and 2,495
for the VP dataset). We also form a vocabulary of pairs
of words by selecting 100 pairs of words which have the
highest mutual information in the training data and co-occur
more than 100 times.

Both FITB and VP involve reasoning about consistency
between two descriptions (question and option for FITB
and two input descriptions for VP). Given two descriptions
d1 and d2, we extract three kinds of textual features from
the pair. The first is term frequency, commonly used for
text classification and retrieval, which counts how often
each word from our vocabulary occurs in (d1, d2) (both de-
scriptions concatenated). The second is a 400D word co-
occurrence vector indicating for each (of the 100) pair of
words whether: (i) the first word occurred in d1 and the
second word occurred in d2 or (ii) the first word occurred
in d1 and the second word did not occur in d2 or (iii) the
first word did not occur in d1 and the second word oc-
curred in d2 or (iv) the first word did not occur in d1 and
the second word did not occur in d2. The third uses a state-
of-the-art deep learning based word embedding represen-
tation word2vec [36] trained on questions from our train-
ing set to represent each word with a (default) 200D vec-
tor. We then average the vector responses of all words in
(d1, d2). These features capture common sense knowledge
about which words are used interchangeably to describe the
same thing, which words tend to co-occur in descriptions,
etc.

Fill-in-the-blank. For N fill-in-the-blank questions and
M options per question, we denote the question as qi, i ∈
{1, . . . , N} and the options for qi as oij , j ∈ {1, . . . ,M}.
We denote the ground truth option for question qi as ogti ,
and its index as jgti .



The FITB problem is a ranking problem: given qi, we
wish to rank the correct option ogti above distractors oij , j 6=
jgti . For each question-option pair (qi, oij), we extract the
three kinds of textual features as described above using
d1 = qi and d2 = oij . Concatenating these three gives
us a 2,486D text feature vector φtextfitb(qi, oij). We compute
scores sij = wTφtextfitb(qi, oij) for each option that captures
how likely oij is to be the answer to qi. We then pick the
option with the highest score. We learn w using a ranking
SVM [7]:

min
w,ξ≥0

1

2
‖w‖2 + C

∑
(i,j),j 6=jgt

ξ2ij

s.t. wTφtextfitb(qi, o
gt
i )− wTφtextfitb(qi, oij) ≥ 1− ξij ,

∀(i, j), j 6= jgt

(1)
Visual paraphrasing. In visual paraphrasing, for each
question i, the goal is to verify if the two given descrip-
tions qi1 and qi2 describe the same image (yi = 1) or
not (yi = −1). We extract all three features described
above using d1 = qi1 and d2 = qi2. Let’s call this
φtextvp1 . We extract the same features but using d1 = qi2
and d2 = qi1. Let’s call this φtextvp2 . To ensure that the final
feature representation is invariant to changing the order of
the two descriptions – i.e. φtextvp (qi1, qi2) = φtextvp (qi2, qi1),
we use φtextvp = [φtextvp1 + φtextvp2 , |φtextvp1 − φtextvp2 |] i.e. a con-
catenation of the summation of φtextvp1 and φtextvp2 with the
absolute difference between the two. This results in a
(2× 2, 495) + (2× 200) + (2× 400) = 6,190D feature vec-
tor φtextvp describing (qi1, qi2). We then train a binary linear
SVM to verify whether the two descriptions are describing
the same image or not.

4.2. Incorporating Visual Common Sense
Our model extends the baseline text-only model (Sec-

tion 4.1) by using an “imagined” scene as an intermediate
representation. “Imagining” a scene involves setting values
for all of the variables (e.g. presence of objects, their loca-
tion) that are used to encode scenes. This encoding, along
with priors within this abstraction that reason about which
scenes are plausible, serve as our representation of visual
common sense. This is in contrast with traditional knowl-
edge base representations used to encode common sense via
text [50, 40]. Exploring alternative representations of visual
common sense is part of future work.

Given a textual description Si, we generate a scene Ii.
We first describe our scoring function that scores the plau-
sibility of the (Si, Ii) pair. We then (Section 4.3) describe
our scene generation approach.

Our scoring function

Ω(Ii, Si) = Φ(Si) + Φ(Ii) + Ψ(Ii, Si) (2)
captures textual common sense, visual common sense

and text-image correspondence. The textual common sense

term Φ(Si) = wTφtext(Si) only depends on text and is the
same as the text-only baseline model (Section 4.1). Of the
two new terms, Φ(Ii) only depends on the scene and cap-
tures visual common sense – it evaluates how plausible the
scene is (Section 4.2.2). Finally, Ψ(Ii, Si) depends on both
the text description and the scene, and captures how con-
sistent the imagined scene is to the text (Section 4.2.3). We
start by describing the representation we use to represent the
description and to encode a scene via visual abstractions.

4.2.1 Scene and Description Encoding
The set of clipart in our visual abstraction were described
in Section 3. More details can be found in [51]. In the gen-
erated scenes, we represent an object Ok using its presence
ek ∈ {0, 1}, location xk, yk, depth zk (3 discrete scales),
horizontal facing direction or orientation dk ∈ {−1, 1} (left
or right) and attributes fk (poses and expressions for the
boy and girl). The sentence descriptions Si are represented
using a set of predicate tuples Tl extracted using semantic
roles analysis [41]. A tuple Tl consists of a primary noun
Al, a relation rl and an optional secondary noun Bl. For
example a tuple can be (Jenny, fly, Kite) or (Mike, be an-
gry, N/A). There are 1,133 nouns and 2,379 relations in our
datasets. Each primary noun Al and secondary noun Bl is
mapped to 1 of the 58 clipart objects al and bl respectively
which have the highest mutual information with it in train-
ing data. We found this to work reliably.

4.2.2 Visual Common Sense
We breakdown and introduce the factors in Φ(Ii) into per-
object (unary) factors Φu(Ok) and between-object (pair-
wise) factors Φpw(Ok1 , Ok2).

Φ(Ii) =
∑
k

Φu(Ok) +
∑
k1,k2

Φpw(Ok1 , Ok2) (3)

Per-object (unary) factors Φu(Ok) capture presence, lo-
cation, depth, orientation and attributes. This scoring func-
tion will be parameterized by w’s5 that are shared across
all objects and pairs of objects. Let L be the log probabili-
ties (MLE counts) estimated from training data. For exam-
ple, Lue (ek) = logP (ek), where P (ek) is the proportion of
images in which object Ok exists, and Luxyz(xk, yk|zk) =
logP (xk, yk|zk), where P (xk, yk|zk) is the proportion of
times object Ok is at location (xk, yk) given that Ok is at
depth zk.

Φu(Ok) =wueL
u
e (ek) + wuxyzL

u
xyz(xk, yk|zk) + wuzL

u
z (zk)

+ wudL
u
d(dk) + wufL

u
f (fk) (4)

Between-object (pairwise) factors Φpw(Ok1 , Ok2) cap-
ture co-occurrence of objects and their attributes, as well as
relative location, depth and orientation.

5Overloaded notation with parameters learnt for the text-only baseline
in Section 4.1



Φpw(Ok1 ,Ok2) = wpwe Lpwe (ek1 , ek2) + wpwxydL
pw
xyd(dx, dy)

+ wpwz Lpwz (zk1 , zk2) + wpwd Lpwd (dk1 , dk2)

+ wpwf Lpwf (fk1 , fk2) (5)

Here the relative x-location is relative to the orientation
of the first object i.e. dx = dk1(xk1 − xk2). Relative y-
location is dy = yk1−yk2 . These capture whereOk2 is from
the perspective of Ok1 . The space of (x, y, z) is quite large
(typical image size is 500 x 400). So to estimate the prob-
abilities reliably, we model the locations with GMMs. In
particular, the factorLuxyz(xk, yk|zk) is over 27 GMM com-
ponents and Lpwxyd(dx, dy) is over 24 GMM components.

Notice that since the parameters are shared across all ob-
jects and pairs of objects, so far we have introduced 5 pa-
rameters in Equation 4 and 5 parameters in Equation 5. The
corresponding 10 log-likelihood terms can be thought of as
features representing visual common sense. The parame-
ters will be learnt to optimize for the FITB (ranking SVM)
or VP (binary SVM) tasks similar to the text-only baseline
described in Section 4.1.

4.2.3 Text-Image Consistency
We now discuss terms in our model that score the consis-
tency between an imagined scene and a textual descrip-
tion. We breakdown and introduce the text-image corre-
spondence factors in Ψ(Ii, Si) in Equation 2 into per-noun
factors Ψn+(Ii, Tl) and per-relation factors Ψr+(Ii, Tl) for
objects that are mentioned in the description, and default
per-object factors Ψu−(Ok) and default between-object fac-
tors Ψpw−(Ok1 , Ok2) when the respective objects are not
mentioned in the description.

Ψ(Ii, Si) =
∑
l

Ψn+(Ii, Tl) +
∑
l

Ψr+(Ii, Tl)

+
∑
k 6∈Si

Ψu−(Ok) +
∑

k1,k2 6∈Si

Ψpw−(Ok1 , Ok2)

(6)

The per-noun factors Ψn+(Ii, Tl) capture object pres-
ence conditioned on the nouns (both primary and sec-
ondary) in the tuple, and object attributes conditioned on the
nouns as well as relations in the tuple. For instance, if the
tuple Tl is (Jenny, kicks, ball), these terms reason about the
likelihood that cliparts corresponding to Jenny and ball ex-
ist in the scene, that Jenny shows a kicking pose, etc. Again,
the likelihood of each concept is scored by its log probabil-
ity in the training data.

Ψn+(Ii,Tl) = wn+abe
(
Ln+e (eal |al) + Ln+e (ebl |bl)

)
+ wn+arfL

n+
arf (fal |al, rl) + wn+brfL

n+
brf (fbl |bl, rl)

(7)

A. There is a 
tree near a table.  

B. The brown 
dog is standing 
next to Mike.  

C. The sun is 
in the sky.  

D. Jenny is standing 
dangerously on the 
swing  Original Scene 

________________. Mike is 
wearing a blue cap. Mike is 
telling Jenny to get off the 
swing  

Question Options and Generated Scenes 

Ground truth: D 
Vision + text: D 
Text alone: A 

Answers 

Figure 3. Scenes generated for an example FITB question.

The per-relation factors Ψr+(Ii, Tl) capture relative ob-
ject location (where is bl relative to al and vice versa), depth
and orientation conditioned on the relation. Note that these
factors are shared across all objects because “sitting next
to” in (Mike, sitting next to, Jenny) and (cat, sitting next to,
Jenny) is expected to have similar visual instantiations.

Ψr+(Ii,Tl) = wr+rxydL
r+
rxyd(dx, dy|rl)

+ wr+rxyd′L
r+
rxyd′(dx

′, dy′|rl)
+ wr+rz L

r+
rz (zal , zbl |rl) + wr+rd L

r+
rd (dal , dbl |rl)

(8)
Here dx′ = dbl(xbl − xal) and dy′ = ybl − yal captures

where the primary object is relative to the secondary object.
The default per-object factors Ψu−(Ok) and the de-

fault between-object factors Ψpw−(Ok1 , Ok2) capture de-
fault statistics when an object or a pair of objects is not
mentioned in the description. Ψu−(Ok) captures the de-
fault presence and attribute whereas Ψpw−(Ok1 , Ok2) cap-
tures the default relative location, depth and orientation.

The default factors are object-specific since each ob-
ject has a different prior depending on its semantic role in
scenes. The default factors capture object states conditioned
on the object not being mentioned in a description. We use
notation D instead of L to stress this point. For example
Du−
e (ek|Si) = logP (ek|k 6∈ Si), Dpw−

z (zk1 , zk2 |Si) =
logP (zk1 , zk2 |k1, k2 6∈ Si).

Ψu−(Ok) = wu−abeD
u−
abe(ek|Si) + wu−abrfD

u−
abrf (fk|Si)

Ψpw−(Ok1 , Ok2) = wpw−rxydD
pw−
rxyd(dx, dy|Si)

+ wpw−rz Dpw−
rz (zk1 , zk2 |Si) + wpw−rd Dpw−

rd (dk1 , dk2 |Si)
(9)

We have now introduced an additional 12 w parameters
(total 22) that are to be learnt for the FITB and VP tasks.
Notice that this is in stark contrast with the thousands of
parameters we learn for the text-only baseline (Section 4.1).

4.3. Scene Generation
Given an input description, we extract tuples as de-

scribed earlier in Section 4.2.1. We then use the approach



Mike is eating a pizza.  
Jenny is playing soccer.  
A cat is eating a hot dog.  

It is a sunny day.  
Mike is sitting with a pizza.  

Jenny is playing with a soccer ball.  

Descriptions Generated Scenes 
Original Scene 

Ground truth: Yes    Vision + Text: Yes  Text alone: Yes 
Answers 

Figure 4. Scenes generated for an example VP question.

of Zitnick et al. [52] trained on our training corpus of cli-
part images and associated descriptions to generate a scene
corresponding to the tuples. Briefly, it sets up a Conditional
Random Field (CRF) model with a scoring function very
similar to Φ(Ii) + Ψ(Ii, Si). It samples scenes from this
model using Iterative Conditional Modes with different ini-
tializations. Details can be found in [52].

4.4. Answering Questions with Imagined Scenes

Fill-in-the-blank. For FITB, we generate one scene us-
ing each question-answer pair Sij = (qi, oij). Fig. 3 shows
qualitative examples of scenes generated for FITB. From
the question-answer pair Sij and the generated scenes Iij ,
we extract features corresponding to our scoring function
(Equation 2) and use them to learn the ranking SVM (Equa-
tion 1) to answer FITB questions. We choose the ranking
SVM C parameter using 5 fold cross validation.

Visual paraphrasing. For VP we generate one scene
for each description Si1 = qi1 and Si2 = qi2 in the in-
put pair of descriptions. Fig. 4 shows qualitative exam-
ples of scenes generated for VP. We capture the difference
between the two sentence descriptions by pairing the gen-
erated scenes with the other description i.e. we compute
Ω(Ii1, Si2) and Ω(Ii2, Si1) (Equation 2). We extract fea-
tures for both combinations, concatenate the addition of the
features and the absolute difference of the features to make
the mapping symmetric. These features are used to train a
binary SVM that determines whether the input pair of de-
scriptions are describing the same scene or not. We choose
the SVM C parameter using 5 fold cross validation.

5. Experiments and Results
5.1. Fill-in-the-blank

We present results of our approach on the FITB dataset
in Table 1. Our approach of “imagining” and joint visual-
text reasoning achieves 48.04% accuracy, significantly out-
performing the text-only baseline (44.97%) by 3.07% us-
ing only 22 extra feature dimensions (compared to 2,486
dimensions of the baseline). This brings the performance
closer to human performance at 52.87%. 6Leveraging vi-

6Bootstrapping experiments show that the mean bootstrapping (100
rounds) performance of visual+text 46.33% ± 0.14% is statistically sig-

Approach Fill-in-the-blank
Accuracy(%)

Random 25.00
Text baseline 44.97
Visual 33.67
Text + visual (presence) 47.02
Text + visual (attribute) 46.39
Text + visual (spatial) 44.80
Text + visual (presence,attribute) 48.60
Text + visual (all) 48.04
Human Mode 52.87

Table 1. Fill-in-the-blank performance of different approaches.

sual common sense does help answering these seemingly
purely text-based questions.

By breaking down our 22 parameters (corresponding to
visual features) into object presence (wue , wpwe , wn+abe, w

u−
abe,

4D), attribute (wuf , wpwf , wn+arf , wn+brf , wu−abrf , 5D) and spa-
tial configuration (wuxyz , wuz , wud , wpwxyd, wpwz , wpwd , wr+rxyd,
wr+rxyd′ , w

r+
rz , wr+rd , wpw−rxyd, wpw−rz , wpw−rd , 13D) categories,

we study their individual contribution to FITB performance
on top of the text baseline. Object presence contributes the
most (47.02%), followed by attribute (46.39%), while spa-
tial information does not help (44.80%). In fact, only using
presence and attribute features achieves 48.60%, slightly
higher than using all three (including spatial). Visual fea-
tures alone perform poorly (33.67%), which is expected
given the textual nature of the task. But they clearly provide
useful complementary information over text. In fact, text-
alone (baseline), vision+text (our approach) and humans all
seem to make complementary errors. Between text-alone
and vision+text, 54.68% of the questions are correctly an-
swered by at least one of them. And between text-alone, vi-
sion+text and human, 75.92% of the questions are correctly
answered.

Our model is capable of imagining scenes that may con-
tain more objects than the ones mentioned in text. Our
model when using only presence does 47.02%, while a vi-
sual common sense agnostic model that only infers objects
mentioned in the tuples (al and bl) does 46.62%. This fur-
ther demonstrates the need for visual common sense based
imagination, and not treating the text at face value. If the
ground truth scenes are available at test time, the perfor-
mance of our approach reaches 78.04%, while humans are
at 94.43%.

In addition to predicting ground truth, we also study how
well our approach can mimic human responses. Our ap-
proach matches the human majority vote (mode) response
39.35% of the times (text alone: 36.40%). When re-trained
using the human mode as the labels, the performance in-
creases to 45.43%. The text-only baseline method does
42.25%. These results suggest that mimicking human is a

nificantly better than that of text 43.65%± 0.15%.



Approach Visual Paraphrasing
Average Precision(%)

Random 33.33
Text baseline 94.15
Visual 91.25
Text + visual (presence) 95.08
Text + visual (attribute) 94.54
Text + visual (spatial) 94.75
Text + visual (presence,attribute) 95.47
Text + visual (all) 95.55
Human Average 94.78

Table 2. Visual paraphrasing performance of different approaches.

more challenging task (text-only was at 44.97% when train-
ing on and predicting ground truth). Note that visual com-
mon sense is also useful when mimicking humans.

We also study how the performance of our approach
varies based on the difficulty of the questions. We consider
questions to be easy if humans agree on the response. We
report performance of the text baseline and our model on
subsets of the FITB test set where at least K people agreed
with the mode. Fig. 5 shows performance as we vary K.
On questions with higher human agreement, the visual ap-
proach outperforms the baseline by a larger margin.

Qualitative results can be found in the supplementary
material.

5.2. Visual Paraphrasing

We present results of our approach on the VP dataset in
Table 2. Our approach of generating and reasoning with
scenes does 1.4% better than reasoning only with text7. In
this task, the performance of the text-based approach is al-
ready close to human, while vision pushes it even further to
above human performance8.

Similar to the FITB task, we break down the contribution
of visual features into object presence, attribute and spatial
configuration categories. Presence shows the most contri-
bution (0.93%). Spatial configuration features also help (by
0.60%) in contrast to FITB. See Table 2.

In VP, a naive scene generation model that only imagines
objects that are mentioned in the description does 95.01%
which is close to 95.08% where extra objects are inferred.
We hypothesize that the VP task is qualitatively different
from FITB. In VP, important objects that are relevant to se-
mantic differences between sentences tend to be mentioned
in the sentences. What remains is to reason about the at-
tributes and spatial configurations of the objects. In FITB,
on the other hand, inferring the unwritten objects is critical
to identify the best way to complete the description. The
VP task can be made more challenging by sampling pairs
of descriptions that describe semantically similar scenes in
the Abstract Scenes dataset [51]. These results, along with

7Bootstrapping text+visual 95.11%± 0.02%, text 93.62%± 0.02%.
8Likely due to noise on MTurk.
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Figure 5. FITB performance on subsets of the test data with vary-
ing amounts of human agreement. The margin of improvement of
our approach over the baseline increases from 3% on all questions
to 6% on questions with high human agreement.

qualitative examples, can be found in the supplementary
material [33].

We would like to stress that FITB and VP are purely tex-
tual tasks as far as the input modality is concerned. The vi-
sual cues that we incorporate are entirely “imagined”. Our
results clearly demonstrate that a machine that imagines and
uses visual common sense performs better at these tasks
than a machine that does not.

6. Discussion

Leveraging visual knowledge to solve non-visual tasks
may seem counter-intuitive. Indeed, with sufficient train-
ing data, one may be able to learn a sufficiently rich text-
based model. However in practice, good intermediate rep-
resentations provide benefits. This is the role that parts and
attributes have played in recognition [30, 15, 48]. In this
work, the imagined scenes form this intermediate represen-
tation that allows us to encode visual common sense.

In this work, we choose clipart scenes as our modal-
ity to “imagine” the scene and harness the power of vi-
sual common sense. This is analogous to works on phys-
ical reasoning that use physics to simulate physical pro-
cesses [23]. These are both qualitatively different from tra-
ditional knowledge bases [9, 50], where relations between
instances are explicitly represented and used during infer-
ence. Humans cannot always verbalize their reasoning pro-
cess. Hence, using non-explicit representations of common
sense has some appeal. Of course, alternate approaches,
including more explicit representations of visual common
sense are worth investigating.

Instead of generating one image per text description, one
could consider generating multiple diverse images to better
capture the underlying distribution [3]. Our approach learns
the scene generation model and visual common sense mod-
els in two separate stages, but one could envision learning
them jointly, i.e. learning to infer scenes for the FITB or VP
tasks.
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[38] A. Peñas, Y. Miyao, Á. Rodrigo, E. Hovy, and N. Kando.
Overview of clef qa entrance exams task 2014. CLEF, 2014.
2

[39] L. Pickup, Z. Pan, D. Wei, Y. Shih, C. Zhang, A. Zisserman,
B. Scholkopf, and W. Freeman. Seeing the arrow of time. In
CVPR, 2014. 2

[40] H. Pirsiavash, C. Vondrick, and A. Torralba. Inferring the
why in images. CoRR, abs/1406.5472, 2014. 2, 3, 5

[41] C. Quirk, P. Choudhury, J. Gao, H. Suzuki, K. Toutanova,
M. Gamon, W.-t. Yih, L. Vanderwende, and C. Cherry. Msr
splat, a language analysis toolkit. In Proceedings of the 2012
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies: Demonstration Session, pages 21–24. Association
for Computational Linguistics, 2012. 5

[42] M. Richardson, C. J. Burges, and E. Renshaw. Mctest: A
challenge dataset for the open-domain machine comprehen-
sion of text. In EMNLP, pages 193–203, 2013. 2

[43] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,
M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman,
and A. Blake. Efficient human pose estimation from single
depth images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2013. 3

[44] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and
W. L. Zhu. Open mind common sense: Knowledge acquisi-
tion from the general public. In On the Move to Meaningful
Internet Systems 2002: CoopIS, DOA, and ODBASE, pages
1223–1237. Springer, 2002. 1

[45] R. Speer and C. Havasi. Conceptnet 5: A large semantic
network for relational knowledge. In The Peoples Web Meets
NLP, pages 161–176. Springer, 2013. 1

[46] C. Unger, C. Forascu, V. Lopez, A. Ngomo, E. Cabrio,
P. Cimiano, and S. Walter. Question answering over linked
data (qald-4). CLEF, 2014. 1, 2

[47] J. Weston, S. Chopra, and A. Bordes. Memory networks.
arXiv preprint arXiv:1410.3916, 2014. 3

[48] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev.
Panda: Pose aligned networks for deep attribute modeling.
arXiv preprint arXiv:1311.5591, 2013. 8

[49] B. Zheng, Y. Zhao, J. Yu, K. Ikeuchi, and S.-C. Zhu. Beyond
point clouds: Scene understanding by reasoning geometry
and physics. In CVPR, 2013. 3

[50] Y. Zhu, A. Fathi, and L. Fei-Fei. Reasoning about object
affordances in a knowledge base representation. In ECCV.
2014. 2, 3, 5, 8

[51] C. L. Zitnick and D. Parikh. Bringing semantics into focus
using visual abstraction. In CVPR, 2013. 2, 3, 5, 8

[52] C. L. Zitnick, D. Parikh, and L. Vanderwende. Learning the
visual interpretation of sentences. In ICCV, 2013. 2, 3, 7


