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Semantic image classification has been a topic of significant interest in com-
puter vision. Many authors have argued for the merit of semantically mean-
ingful features instead of low level filter responses or mid level codes for
vision tasks [1, 3, 4, 5, 8]. For scene classification, in particular, images are
often represented as Bags of semantics (BoS). This is achieved by scoring
image regions with the help of trained concept labelers (ex. object detec-
tors) [3, 5, 8]. Despite the potential benefits of the BoS, it has not been
very successful so far, for two main reasons: 1) The absence of strong label-
ers producing reliable semantics. 2) A lack of an invariant embedding (ex.
Fisher vectors [6, 7]) specifically suited for semantic descriptors. The recent
advance in object classification using CNNs [2] has solved the problem of
noisy semantic labeling. The problem of deriving an invariant scene repre-
sentation with CNN semantics, however, is a challenging task and our main
focus in this paper.

The CNN in [2] which is pre-trained for a vocabulary V = {v1, . . . ,vS}
of S semantic concepts (1000 ImageNET classes), generates the image BoS
I = {π1,π2, . . . ,πn} producing, for each image patch, a posterior probability
vector πi. These vectors or semantic descriptors are multinomial parameters
and their distribution in an image can be modeled using a Dirichlet mixture.
This inspired our first proposal for an embedding of image BoS, the Dirich-
let Mixture Fisher Vector (DMM-FV). The log likelihood of an image BoS
under a DMM can be expressed as,
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where ψ(x) = ∂γ(x)
∂x . Using (3) and an appropriate Fisher information ma-

trix, the image BoS can be encoded into a DMM FV.
Since, Dirichlet distribution is a natural model for probability vectors,

it is natural to expect that DMM-FV would perform as impressively on se-
mantics as the classic Gaussian Mixture Fisher vector (GMM-FV) does with
SIFT [7]. Our experiments, however, reveal that the solution fails miserably
most likely due to the complicated nature of the space of probability vec-
tors (simplex). Classifiers generate probabilities by propagating features
through a sigmoid or a soft-max function. These transformations are highly
non-linear and therefore destroy the Euclidean properties of the original
space. This is true for the simplex which is characterized by non-metrics
like KL divergence and has non-linear geodesics. Therefore, mixture mod-
eling on this non-Euclidean space is likely to be very difficult.

To circumvent the problems presented by the simplex geometry, we seek
an alternative interpretation of semantic descriptors π’s. Like the parame-
ters of any exponential family, these multinomials can be expressed in their
natural parameter form ν = η(π). When the semantics are binary, the natu-
ral parameter is obtained by a logit transform ν = log π

1−π . This is shown to
map the features from a highly-nonlinear semantic space back into a simpler
Euclidean space. For multinomials, this transformation takes the forms,
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This is an extended abstract. The full paper is available at the
Computer Vision Foundation webpage.
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Figure 1: CNN based semantic image representation. Each image patch is
mapped into an SMN π on the semantic space S by the ImageNET CNN.
The resulting image representation is known as a Bag of semantics.

where νk and πk are the kth entries of ν and π , respectively. Since the
natural parameters ν , unlike semantic multinomials π are likely to reside in
a simpler space, even a standard Gaussian Mixture FV [6] can be used to a
good effect.

With the help of the natural parameter formulations (4)- (6) for Ima-
geNET semantics and a GMM FV, we derive our BoS based scene repre-
sentation. We refer to it simply as a semantic Fisher vector. The semantic
FV is shown to be better than FVs of intermediate layer CNN features due
to its invariance, which is a direct result of semantic abstraction. We show
that a classifier of semantic FV outperforms even a fine-tuned ImageNET
CNN. The proposed semantic FV relies on object semantics. As an image
representation, therefore, it is complementary to the features from the scene
classification network (Places CNN) recently proposed in [9]. Our exper-
iments show that a simple combination of the two descriptors, produces a
state-of-the-art scene classifier for MIT Indoor and MIT SUN benchmarks.
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