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We develop a new approach to inferring lightness, the perceived reflectance
of surfaces, from a single image. Classic methods view this problem from
the perspective of the intrinsic image model, which assumes that the image
intensity I is the product of reflectance image R and shading image S. Light-
ness L is simply the solution of R attempted by the visual system given its
knowledge about the regularity of reflectance and shading:

I = R ·S, (1)

L = R∗,s.t. priors(R,S) (2)

Such a decomposition is ill-defined without priors, and the classic strategy is
to exploit strong priors in order to constrain the search space for the solution
(R∗,S∗) that satisfies the per-pixel factorization.

Our approach involves a complete change in intuition and strategy. We
learn a lightness model directly from data, leveraging a training set of many
relative reflectance comparisons made by human subjects. That is, we focus
on learning the relative ordering of L, i.e. Li −L j, directly from contextual
cues present in two local image patches, xi and x j, without resorting to an
absolute pixel-wise decomposition of I into plausible R and S. Our model is
built upon two key elements of recent work:

1. The Intrinsic Images in the Wild (IIW) dataset [1] provides a large
collection of ground-truth in the form of human judgements of rela-
tive reflectance: 5230 indoor images with a total of 872,161 pairs of
comparisons, about 106±45 comparisons per image. These pairwise
comparisons take three values: same, lighter, or darker, and they are
noisy across human subjects.

2. Rich contextual features computed through either hierarchical sparse
coding (HSC) [2, 6] or deep convolutional neural networks (CNN) [4,
5] provide an informative fine-to-coarse, small-to-large context fea-
ture representation of every patch in the input image, enabling a
simpler and direct local classification approach without heavy re-
liance on any hand-designed global priors or expensive inference al-
gorithms.

Figure 1 illustrates the ground-truth labeling from which we train as
well as some example results of our learned models. Figure 2 diagrams
the overall architecture within which we utilize HSC or CNN algorithms
as feature extractors. We extract features zi, z j of patches xi, x j and learn
weights w for a linear classifier f :

Li −L j = f (zi,z j) = wT (zi − z j) (3)

When using HSC as a feature extractor, we learn the sparse representa-
tion generatively as in [6] and then train w by ridge ranking regression on
the human ground-truth data for reflectance:

minε(w) = ∑
i, j

log
(

1+ exp(−Ji jwT (zi − z j))
)
+ γwT w (4)

where:

Ji j =

{
1, Rh

i > Rh
j

−1, Rh
i < Rh

j
(5)

Here Rh refers to human ratings of relative reflectance (lightness) on the
IIW dataset. γ calibrates regularization. For each example where humans
judge equal reflectance (Rh

i = Rh
j ), we create two virtual examples with both

Ri j = 1 and Ri j =−1 in order to force prediction f (zi,z j) toward zero.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

our HSC results our CNN results
Figure 1: Left: Human lightness annotations [1]. Right: Our model predic-
tions compared to human ground-truth (blue for correct, red for incorrect).
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Figure 2: Direct learning of pairwise lightness relationships.

For our CNN-based feature extractor, we use the Caffe [4] implemen-
tation of the 7-layer convolutional neural network of [5] and take the 4096-
dimensional activations of the final fully connected layer as a feature de-
scriptor for a patch presented as input to the network. We use the standard
cross entropy classification loss to train the CNN from both randomly ini-
tialized weights and weights initialized by pre-training on ImageNet [3].

As measured by the standard benchmark of confidence-weighted dis-
agreement with human ground-truth (WHDR) on the IIW dataset, our HSC
and CNN models offer state-of-the-art performance, achieving 20.9% and
18.1% WHDR, respectively. This matches that of more complicated algo-
rithms such as the CRF method of Bell et al. [1]. Use of rich patch represen-
tations, obtained via hierarchical sparse coding or convolutional neural net-
works, and a large amount of training data, enables our purely local model
to compete with global inference approaches. Our work opens up new areas
of exploration within the classic problem of intrinsic image decomposition.
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