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Superpixels have become an established image preprocessing step to signif-
icantly reduce the complexity of higher-level computer vision techniques.
Typically their role is to partition the image into a tractable set of “units” in
which the pixels should have similar appearance and consistent depth value
if applicable. A useful superpixel algorithm should ideally run fast, possi-
bly real-time, and guarantee a reliable, regular, and topologically coherent
image partitioning. While a majority of existing work does not satisfy most
of these requirements, particularly speed, some of the recent work reported
real-time running times [1, 2].

In this paper, we build on [3] and propose a much more efficient opti-
mization algorithm that results in an order of magnitude less updates (speed-
up). Inspired by the SEEDS algorithm [2] our method uses a coarse-to-fine
energy update strategy, which allows the optimization to reach better energy
minima than [3] when employing even a single iteration as shown in Fig. 2.

More formally, let sp ∈ {1, · · · ,M} be the assignment of pixel p to a
superpixel, and let s = (s1, · · · ,sN) be the set of all random variables repre-
senting the segmentation, with N the size of the image. Following [3], we
formulate the segmentation problem with an objective function similar to
k-means clustering, where we want superpixels that are coherent in appear-
ance (Ecol) but that have also regular shape (Epos) and reasonable superpixel
boundary length (Eb). We additionally add constraints (Esize) on the size of
the superpixel to prevent tiny superpixels and topology contraints (Etopo)
to enforce that each superpixel be a connected component (i.e. topology
preservation). Let µi be the mean position of the i-th superpixel and let ci be
its mean color. Our Markov random field (MRF) energy is then defined as

Emono(s,µ,c) = Ecol(s,c)+λposEpos(s,µ)
+λbEb(s)+Etopo(s)+Esize(s) (1)

with c = (c1, · · · ,cM), µ = (µ1, · · · ,µM) the set of centers and mean posi-
tions for all superpixels.

We use block coordinate gradient decent to minimize the energy Eq. 1.
This is done by maintaining a queue, which is initialized with the blocks at
the boundary on the coarsest level. The blocks in the queue are then itera-
tively popped out and discarded if minimizing the energy does not change
their current assignment. If the assignment changes, the new boundary
blocks are pushed to the bottom of the priority queue. When the queue is
empty, the optimization will continue on the finer level. The process will not
stop until the optimization on the pixel level is completed. During the com-
putation at each level, each block is initialized to be a regular grid and the
mean color and position are computed for each block. Then we first check
whether changing the label of the block would violate the connectivity. If it
does not violate, we solve optimally for the block assignment by minimizing
the energy in Eq. 1. This is done by simply trying all assignments from the
4-neighboring blocks. If the block has changed assignment, we update the
mean position and color using the incremental mean equation for the two
superpixel involved (the one that this block belonged to before, as well as
the one in the new assignment). We illustrate this process in Fig. 1.

We then augment this algorithm to perform joint segmentation and stereo
estimation. Following slanted-plane methods [3], we represent the dispar-
ity of a superpixel with a slanted plane θi = (Ai,Bi,Ci) and reason about
segmentation in the left image. The disparity of a pixel belonging to the i-th
superpixel can then be computed by d(p,θi) =Ai px+Bi py+Ci,. We further
define oi, j ∈ {co,hi, lo,ro} to be a discrete variable that reasons about the
type of occlusion boundary between adjacent superpixels i and j, with the
states representing whether the boundary is co-planar, hinge, the i-th plane
is in front, or behind. Let θ = (θ1, · · · ,θM) be the set of plane parameters
for all superpixels and let o be the set of all occlusion variables. Addition-
ally, let fi be an outlier flag for the i-th pixel, and let f the set of flags for
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Figure 1: Coarse-to-fine boundary-level updates start at the coarse level
(top-left) and proceeds to the finest level iteratively. The final result, de-
fined on the finest (pixel) level, is shown on the bottom-right.

all pixels. We define the energy of the joint segmentation and stereo as the
sum of energies encoding the monocular energy (Emono) as well as consis-
tency with the stereo image evidence (Edisp), a prior on the complexity of
the boundaries (Eprior) and smoothness (Esmo) between slanted planes of
neighboring super pixels. Thus

Etotal(s,µ,c,θ ,o, f) = Emono(s,µ,c)+Estereo(s,θ ,o, f) (2)

with the energy related to stereo defined as

Estereo(s,θ ,o, f) = λdispEdisp(s,θ , f)+λsmoEsmo(s,θ ,o)+λpriorEprior(o)
(3)

The minimization of Eq. 2 is similar to that in monocular case. The
difference is that after updating s, we have to estimate the boundary type
o, the outlier flags f and plane parameters θ . The boundary variables are
optimized one at a time by selecting the label with minimum cost. The
outlier flags are optimized given the current plane parameters. The planes
are then fitted using least squares taking into account the non-outlier pixels
only.
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Figure 2: Energy as a function of the number of boundary updates in KITTI
dataset.

We demonstrate the effectiveness of our approach in two important set-
tings: unsupervised segmentation of RGB images, as well as joint segmenta-
tion and stereo estimation via slanted planes. We evaluate and compare our
approach to state-of-the-art superpixel algorithms on the BSD and KITTI
benchmarks. Our approach significantly outperforms the baselines in the
segmentation metrics and achieves the lowest error on the stereo task.
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