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Image classification has advanced significantly in recent years with the avail-
ability of large-scale image sets. However, fine-grained classification re-
mains a major challenge due to the annotation cost of large numbers of fine-
grained categories. We show that compelling classification performance can
be achieved on such categories even without labeled training data.

Following [1], given a specific input embedding, we derive a prediction
by maximizing the compatibility F over SJE as follows:

f(x;W) = argmax F (x,y; W) = argmax 0 (x) ' Wo(y).
yey yey

where 6 (x) is the input embedding and ¢(y) is the output embedding. The
matrix W is learned by enforcing the correct label to be ranked higher than
any of the other labels [7], the objective is:
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where €(xy,y1,y) = Ayn.y) + (i) TWo(y) — 0(x) "W (3y). For zero-
shot learning: we use ¢@(y) of training classes and learn W. For prediction,
we project 6(x) of test images onto the W and search for the nearest ¢ that
corresponds to one of the test classes.

We use state-of-the-art image features [6] and focus on different super-
vised and unsupervised output embeddings described in the following:

Attributes (¢%! & @ [3]) model shared characteristics of objects. For
instance, for rat, monkey, whale and the attribute big, %! =[0,0,1] — rat
= monkey < whale, whereas -4 = [2,10,90] — rat < monkey << whale.

Word2Vec ((pW [4]) a two-layer neural network is trained to predict a set
of target words from a set of context words. The first layer acts as a look-
up table to retrieve the embedding for any word in the vocabulary. The
second layer predicts the target word(s) via hierarchical soft-max. We use
the skip-gram (SG) formulation where words within a local context window
are predicted from the centering word.

GloVe (¢Y [5]) incorporates co-occurrence statistics of words that frequently
appear together within the document. The objective is to learn word vectors
such that their inner product equals the co-occurrence probability of these
two words.

Weakly-supervised Word2Vec (¢"V+) we pre-train the first layer weights
using [4] on Wikipedia, and fine-tune the second layer weights using a
negative-sampling objective [2] only on the fine-grained text corpus. These
weights correspond to the final output embedding. The negative sampling
objective is formulated as follows:

L= Y logo(viv,)+ Y logo(—vivy) @)
w,ceD, w,ceD_

Ve = Z vi/|context(w)|
iccontext(w)

where v, and v, are the label embeddings we seek to learn, and v, is the
average of word embeddings v; within a context window around word w.
D consists of context v, and matching targets v,,, and D_ consists of the
same v, and mismatching v,,.

Bag-of-Words ((pB ) we collect Wikipedia articles that correspond to each
object class and build a vocabulary of most frequently occurring words. We
then build histograms of these words to vectorize our classes.

Hierarchies ((pH) we measure the similarity between two classes by esti-
mating the distance between terms in an ontology such as WordNet.
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Figure 1: Structured Joint Embedding leverages images (x;) and labels (y;)
by learning parameters W of a function F (x;,y;, W) that measures the com-
patibility between input (6 (x;)) and output embeddings (¢ (y;)).

Combined embeddings to learn a better joint embedding we combine ¢@:
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We emphasize the following take-home points: (1) Unsupervised label
embeddings learned from text corpora yield compelling zero-shot results
(Tab. 1), outperforming previous supervised SoA on AWA and CUB [1].

supervision source ® AWA | CUB | Dogs
text oW [ 512 | 284 | 19.6
unsupervised text (PZ 588 | 242 17.8
text [ 44.9 22.1 33.0
WordNet | ™ | 512 | 206 | 243
supervised human o"T | 520 37.8 -
human (pA 66.7 50.1 _

Table 1: Zero-shot learning results with SJE w.r.t. supervised and unsuper-
vised output embeddings (Input embeddings: GoogLeNet [6])

(2) In combination, unsupervised output embeddings (w/o supervision)
improve zero-shot performance, suggesting that they provide complemen-
tary information (Tab. 2).

supervision method AWA | CUB | Dogs

unsupervised | SJE (cmb) 60.1 29.9 35.1
supervised SJE (cmb) | 73.9 51.7 -
SoA [1] 494 27.3 -

Table 2: Comparing SJE combined embeddings with SoA.

(3) There is still a large gap between the performance of unsupervised
output embeddings and human-annotated attributes on AWA and CUB, sug-
gesting that better methods are needed for learning discriminative output

embeddings from text.
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