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Abstract

This paper presents a hierarchical framework for de-
tecting local and global anomalies via hierarchical feature
representation and Gaussian process regression. While lo-
cal anomaly is typically detected as a 3D pattern match-
ing problem, we are more interested in global anomaly that
involves multiple normal events interacting in an unusual
manner such as car accident. To simultaneously detect lo-
cal and global anomalies, we formulate the extraction of
normal interactions from training video as the problem of
efficiently finding the frequent geometric relations of the
nearby sparse spatio-temporal interest points. A codebook
of interaction templates is then constructed and modeled us-
ing Gaussian process regression. A novel inference method
for computing the likelihood of an observed interaction is
also proposed. As such, our model is robust to slight topo-
logical deformations and can handle the noise and data un-
balance problems in the training data. Simulations show
that our system outperforms the main state-of-the-art meth-
ods on this topic and achieves at least 80% detection rates
based on three challenging datasets.

1. Introduction

Visual analysis of suspicious events is a topic of great
importance in video surveillance. A critical issue in
anomaly analysis is to effectively represent an event to al-
low for a robust discrimination. Trajectory representation
[11] is ubiquitous but unreliable in crowded scenes. Alter-
natively, local statistics of low-level observations are uti-
lized in [1, 19]. These methods typically begin with ex-
tracting local spatio-temporal descriptors densely or in a
sparse manner via interest point detection. To handle the
inter- and intra-classes variations in normal events, mixture
of models [14] or the bag-of-words techniques [15, 23] are
performed. However, the geometric relations between local
patterns have not been considered.

Figure 1: Complex interaction modeling: (a) Input videos
are represented by a sparse set of interest points. (b) Inci-
dents with similar spatio-temporal relationships of interest
points are merged altogether to form deformable interaction
templates. (c) Gaussian process regression is used to model
each templates. The likelihood of being part of a specific
interaction is indicated from low (red) to high (blue). Un-
likely locations are invisible for better visualization.

Similar to [6], video event anomalies can be classified as
local and global anomalies. A local anomaly is defined as an
event that is different from its spatio-temporal neighboring
events; whereas, a global anomaly is defined as multiple
events that globally interact in an unusual manner, even if
any individual local event can be normal. Most research
on anomaly detection like [1, 14, 19] have focused more
on detecting local anomalies such as objects with strange
appearance or speed, but less on global anomaly. Global
anomalies are common phenomenon in many scenarios like
traffic surveillance. The methods in [3, 18] were devised
to model the spatio-temporal relationships of dense features
with heavy load in space and time, and did not work that
well for modeling sparse features.

As video events can be discriminated from their geomet-
ric relations of spatio-temporal interest points (STIPs) in
Fig. 1, this paper proposes a unified framework, shown in



Figure 2: Overview: Local features are extracted around interest points in different scales and quantized into a low-level
visual vocabulary. The local anomaly detection is to measure the k-NN distance of a test cuboid against the visual vocabulary.
For the high-level analysis, ensembles of the nearby STIP features are extracted by dense sampling and are clustered to
construct a high-level codebook of interaction templates. Gaussian process regression provides a probabilistic framework to
model the geometric relations of the STIP features and detect global anomaly.

Fig. 2, to detect both local and global anomalies using a
sparse set of STIPs. We identify local anomalies as those
STIP features with low-likelihood visual patterns. To deal
with inter-event interactions, we further collect an ensemble
of the nearby STIP features and consider that an observed
ensemble is regular if its semantic (appearance) and struc-
tural (position) relations of the nearby STIP features occur
frequently. Global anomalies are identified as interactions
that have either dissimilar semantics or misaligned struc-
tures with respect to the probabilistic normal models.

More specifically, the proposed approach has two main
stages to deal with global anomaly. As recognizing global
anomaly requires a set of normal interaction templates, we
first pose the extraction of normal interactions from train-
ing videos as the problem of finding the frequent geomet-
ric relations of the nearby interest points. As shown in
Fig. 1 b, the proposed extraction method builds a high-
level codebook of interaction templates, each of which has
an ensemble of STIPs arranged in a non-rigid deformable
configuration. Moreover, it can efficiently deal with large
training data by utilizing an optimal computation of high-
dimensional integral images [22]. We next model the ge-
ometric relations of STIP features and propose a novel in-
ference method using Gaussian process regression (GPR).
GPR is more suitable on the topic of anomaly detection
since it is fully non-parametric and robust to the noisy data
and it also supports missing input values like sparse STIPs.

Compared to previous works to be discussed in Sec. 2,
our method possesses several advantages: 1) it provides a
novel hierarchical event representation to simultaneously
deal with local and global anomalies; 2) it employs an ef-
ficient clustering method to extract deformable templates
of inter-event interactions from training videos; 3) it con-
structs a GPR model based on a sparse set of STIPs, which
is not only adaptive based on the available data, it can also
learn interactions in a large context while individually lo-
cate abnormal events instead of taking an entire interac-
tion as an atomic unit. Note that since our model is built
upon STIPs rather than densely-sampled patches [18, 3],
the space and time complexity of the event modeling can be

greatly reduced (e.g. 150 STIPs v.s. 35301 dense patches in
a 41×41×21 volume). Experiments on three public datasets
are conducted and the comparisons with the main state-of-
the-art methods verify the superiority of our method.

The rest of paper is organized as follows. Sec. 3 in-
troduces the hierarchical event and interaction representa-
tion. The high-level codebook construction is elaborated
in Sec. 4. Sec. 5 details the GPR learning and inferring,
and joint anomaly detection. Experiments are conducted in
Sec. 6, and Sec. 7 concludes our work.

2. Related Work

A considerable amount of literature has been published
on visual anomaly analysis. A detailed survey [16] on this
topic shows the increasing publications in the last decades.
Behavior representation, understanding and anomaly infer-
ence are the major issues. Oftentimes, normal event under-
standing is posed as a 3D pattern-learning problem. Sus-
picious events are treated as low-likelihood patterns with
respect to either offline templates of normal events [19] or
adaptive models learned from sequential data [1]. To de-
tect anomalies from unconstrained scenes, Mahadevan et al.
[14] proposed a mixtures of dynamic textures (MDT) model
[4] to detect temporal and spatial abnormalities. These ap-
proaches (e.g. [19]) flag abnormal events based on inde-
pendent location-specific statistical models and have not
considered the relationships between local observations.
Benezeth et al. [2] used a Markov Random Fields (MRF)
model parameterized by a co-occurrence matrix to allow for
spatial consistency detection. Real-time constrains are an-
other pursuit in [1, 13]. One-class support vector machine
[20] was used in [25, 5] to detect unusual behavior.

As for modeling group interactions, Cui et al. [7] pro-
posed an interaction energy potential to model the interper-
sonal relationship. Social force model was extended from
physics to analyze crowd dynamics [15]. These models
strongly adhered to motion information and had their lim-
itation in specific scenarios. Roshtkhari and Levine [18]
encoded the spatio-temporal compositon (STC) of densely-



sampled 3D patches with a probability density function
(pdf). The high-dimensional pdf had to be approximated but
suffered from the curse of dimensionality. Boiman and Irani
[3] proposed an inference by composition (IBC) algorithm
to compute the joint probability between a database and a
query ensemble. However, the underlying graph expands
substantially in accordance with the database size leading
to inefficient message passing. Also, [3, 18] modeled the
spatio-temporal relations of densely-sampled 3D patches
which are extracted with high computational demand.

Gaussian process regression has been applied to trajec-
tory analysis [11] and human motion modeling [24]. For
the multi-object activity modeling, Loy et al. [12] formu-
lated the non-linear relationships between decomposed im-
age regions as a regression problem. As the normalness of
a specific region at time t is predicted based on its comple-
ments from (t − 1), spatial configurations between objects
can be well characterized. However, Markov assumption
cannot handle complex causality.

3. Hierarchical Feature Representation
We first propose a hierarchical structure for event and in-

teraction representations. In contrast to [18], the geometric
relations are characterized upon the nearby STIP features
(events) rather than the dense-sampled local observations to
facilitate more efficient processing.

3.1. Low Level: Multi-Scale Event Representation

Since any event cannot happen without dynamic, an
STIP feature is used to represent an event. We use the STIP
detector proposed by Dollar et al. [10]. It utilizes two sepa-
rate filters in the spatial and temporal directions: 2D Gaus-
sian filter in space and 1D Gabor filter in time. To handle
events with different scales due to the camera perspective
distortion, a two-level Gaussian video pyramid is built from
input video. Depending on the scenario, we empirically
chose an appropriate descriptor from the interest point re-
sponse (IPR) [10], 3DSIFT [21] and the 3D extensions of
HOG [8] and HOF [9].

We next attempt to build a normal model to handle inter-
and intra-class variations. This is done by quantizing nor-
mal events into a visual vocabulary C using the k-means
algorithm based on the Euclidean metric. The pattern simi-
larity of each interest point is based on the k-nearest neigh-
bors (k-NN) distance with respect to the visual vocabulary
C given by

yli =
1

k

∑
cj∈Ci

||di − cj ||2 (1)

where Ci ⊆ C is the subset of the top-k nearest codewords
for the interest point STIPi and di is its feature vector.
The k-NN-based detector is simple but predictable. Abnor-
mal events with strange appearances and unusual motions

can then, efficiently and effectively, be detected by a user-
specified threshold.

3.2. High Level: Ensemble of STIP features

To acquire the possible interactions in videos, we
densely slide a 3D window over the video space with a 10-
pixel sampling step to obtain the ensembles of the nearby
STIP features given by

Ek = {(vi, y
l
i, Ci)|∀STIPi ∈ Rk} (2)

where Rk denotes the spatio-temporal neighborhood
around the center. For each interest point STIPi ∈ Rk, its
relative location vi ∈ R3, its k-NN distance yli, and the sub-
set of the matched codewords Ci ⊆ C are stored.

There are ensembles containing only few STIPs or noth-
ing. Since we emphasize the interaction between multiple
events, we enforce a quality control on ensembles to filter
out such ensembles and accelerate the processing in the next
stage. The quality function of an ensemble is defined as the
area ratio of cuboid volumes V(STIPi) to the ensemble vol-
ume V(Ek):

q(Ek) =

⋃
∀STIPi∈Rk

V(STIPi)

V(Ek)
(3)

To efficiently calculate the union volume of cuboids,
we adopt the computation of high-dimensional image in-
tegral technique in [22]. Suppose there is a volumetric
mask which flags coverages of all cuboids found in the in-
put video. Its 3D integral image is denoted by IC . Eight
corner locations of the ensemble Ek is denoted by {xp|p ∈
{0, 1}3}. The quality function in Eq. 3 can then be com-
puted by

q(Ek) =

∑
p∈{0,1}3(−1)3−||p||1IC(xp)

V(Ek)
(4)

Each successive computation of quality function reduces
to O(1) at the cost of the first acquirement of IC . Note that
we consider local and global anomalies individually. That
is, we exclude the anomalous interest points detected by the
local anomaly detector after this step as we emphasize the
interaction analysis of normal events.

4. High-level Codebook Construction
To find the frequent geometric relations of the nearby

STIP features from training videos, we cluster these quali-
fied ensembles to acquire a high-level codebook of implicit
interaction templates. Specifically, given a set of quali-
fied ensembles, we aim to assign the ensembles into k sets
S = {S1, ..., Sk} so as to minimize the within-cluster dis-
tance function given by

J = min
S,k

k∑
i=1

∑
Ej∈Si

sim(Ej , Ei) (5)



Figure 3: A spatial example of measuring similarity:
We partition the ensemble space into 3-by-3 regions. Four
different spatial relations of STIPs (black dots) and their
matched codewords are shown. Ensembles E1 and E2
share the similar semantic and structural relationships while
E1 and E3 only have similar structural relationships and
E1 and E4 are quite different.

where Ei is the representative ensemble in Si.
Note that the ensemble topology here is represented by

STIPs, which is contrary to the vector form in [18]. The
major advantage is that the resulting centroids can be de-
formable by agglomerating the ensembles of the same clus-
ter rather than calculating the within-cluster mean vector.

4.1. Semantic and Structural Similarities

A similarity measurement of two ensembles is required
for clustering. We employ a two-phase strategy for compu-
tational efficiency. It begins with partitioning an ensemble
space into nr 3D subregions. We then compute the topology
similarity based on a newly defined co-occurrence statistics:

sim(Ek, El) =
uT
k Qk,lul

||uk + ul||1 − uT
k ul

(6)

where the location occurrence uk for an ensemble Ek is an
nr×1 binary vector in which every entry indicates whether
any STIP exists in the corresponding subregion; the label
co-occurrence matrix Qk,l is an nr × nr binary diagonal
matrix in which the ith diagonal entry indicates whether any
pair of the matched codewords from ensembles Ek and El

coincides in the ith subregion. Fig. 3 demonstrates the sim-
ilarity computation in the spatial domain.

4.2. Bottom-Up Greedy Clustering

As the ensemble quantity grows substantially in propor-
tion to the size of training data, it is advantageous to adopt
a bottom-up procedure for large datasets to reduce the time
and memory requirements. Algorithm 1 shows a greedy ap-
proach which sequentially updates an ever-growing code-
book E once a qualified ensemble Ek is available. Based on
the dataset, we set the similarity threshold Ts ∈ [0.4, 0.6] so

Algorithm 1 Clustering ensembles of STIP features

Input: Ek (a qualified ensemble)
Output: E = {Ei} (a codebook of interaction templates)
s = maxi sim(Ek, Ei) . using Eq. 6
i∗ = arg maxi sim(Ek, Ei)
if s > Ts then

if q(Ei∗) ≤ Tq then . using Eq. 4
Ei∗ = Ei∗ ∪ Ek

end if
else

add new template Ek to E
end if

that every templates have uniform amount of members. The
agglomeration procedure collects STIPs from the matched
ensembles to form a more informative one.

We also prune noise for each template by discarding sub-
regions with lower support (i.e., number of interest points).
In addition, we enforce quality control by using Eq. 4 in or-
der to avoid templates with unbalanced amount of data. The
low-support suppression and quality control mechanisms
are straightforward but effective. Fig. 8 shows that tem-
plates are more compact and distinguishable through these
mechanisms. After we apply the quality control, we can
find that the first template drastically discriminates the first
test ensemble with the others. This is because the number of
STIPs in each template is balanced. Moreover, the misclas-
sification rate of abnormal ensembles can be significantly
reduced by using the low-support suppression.

5. GPR-based Global Anomaly Detection
We next formulate each template in E as a k-NN regres-

sion problem and construct a model using GPR for learning
and inferring, as shown in Fig. 4. The details are delineated
in the following subsections.

5.1. GPR Model Learning

For a specific template, let V = {vi ∈ R3|i = 1, ..., n}
be a sequence of relative positions of STIPs. Let k-NN dis-
tances y = {yli ∈ R|1, ..., n} serve as the target values. The
goal of GPR is to learn the mapping from inputs V to the
continuous observable targets y. Assume the target vector y
follows a zero-mean Gaussian prior. According to [17], the
predictive distribution on f∗ = {f(v(i)∗ ) ∈ R|i = 1, ..., n∗}
at test locations V∗ = {v(i)∗ ∈ R3|i = 1, ..., n∗} is a multi-
variate Gaussian distribution given by

f∗|V, y,V∗ ∼ N (̄f∗,V(f∗)) (7)

where f̄∗ = KT
∗ (K+σ2

nIn)−1y and V(f∗) = K∗∗−KT
∗ (K+

σ2
nIn)−1K∗, in which In is an n × n identity matrix, and
K(V, V), K(V,V∗), and K(V∗,V∗), denoted by K, K∗,



Figure 4: Implicit interaction model learning and infer-
ring: In the middle, squares represent observed variables
and circles represent model prediction. The thick horizon-
tal bar represents a set of fully connected nodes. For each
normal template, its topology are formulated as a k-NN re-
gression problem for Gaussian process regression. Global
anomaly detection is to measure the semantic and structural
similarities of a test ensemble w.r.t. GPR models.

and K∗∗, respectively, are the covariance matrices evaluated
based on a predefined kernel function.

We mainly use the radial basis function (RBF) kernel,
k(x, x′) = σ2

f exp(−0.5||x− x′||22/l2), to relate predictions
at nearby locations with each other. To handle noisy ob-
servations, additive identical, independent distributed Gaus-
sian noise with variance σ2

n is imposed on each of observa-
tions in the training set. Therefore, the hyper-parameters
in the RBF kernel include the length-scale l and the sig-
nal variance σ2

f , and the noise variance σ2
n which can be

estimated by minimizing the negative log marginal likeli-
hood with respect to the hyper-parameters using the con-
jugate gradient optimizer. After the learning process, the
GPR model for each template records the training data and
the learned hyper-parameters, i.e., D = {V, y, l, σf , σn}).

While GPR can deal with missing or noisy data, it is,
however, ill-conditioned when training data involve STIPs
that are low-support to an event (e,g., STIPs from dynamic
background). As GPR uses the entire training set including
the low-support STIPs in the learning process, these STIPs
inevitably impact the performance of GPR prediction. Be-
sides, comparing a test sample to each of the GPR models,
with very unbalanced numbers of training data, may be un-
fair, since it will favor the one with more training data.

To tackle the above problems, the clustering procedure
in Sec. 4 has taken these into consideration. Moreover, ob-
served ensembles with similar structure are agglomerated
altogether so that STIPs within the merged ensemble are ar-
ranged in a deformable configuration.

5.2. GPR Model Inference

In this section, we describe how to infer the likeli-
hood of a test sample with respect to a GPR model us-
ing a probabilistic framework. Given an observed sample
E∗ = (V∗, y∗), the likelihood to a specific GPR model Di

Algorithm 2 Marginal Inference Algorithm

Input: Di = {V, y, l, σf , σn} (GPR model), E∗ =
(V∗, y∗) (test ensemble), k (kernel function)

Output: − log p(y∗|V∗, Di)
GPR-PREDICTION(V, y, k, σ2

f , σ
2
n,V∗)

L∗ := cholesky(V(f∗) + σ2
nIn∗) . Cholesky decompose

v := L∗\y∗
u := L∗\f̄∗
return 1

2uT u + 1
2vT v− vT u +

∑
i log[L∗]ii + n

2 log 2π

function GPR-PREDICTION(V, y, k, σ2
f , σ

2
n,V∗)

L := cholesky(K + σ2
nIn)

α := LT \(L\y)
f̄∗ := KT

∗α
W := L\K∗
V(f∗) := K∗∗ −WT W
return f̄∗,V(f∗)

end function

is defined by the marginal probability:

p(y∗|V∗, Di) =

∫
p(f∗|V∗, Di)p(y∗|f∗)df∗ (8)

where the possibility p(f∗|V∗, Di) accounts for the po-
sitional distribution and p(y∗|f∗) captures the appearance
similarity. The inference can jointly consider how likely the
semantic and structural relationships in the test ensemble
belong to the GPR model.

In Eq. 8, we use GPR to model the first term which yields
a multivariate Gaussian distribution. As for the similarity
term p(y∗|f∗), there are many choices. Kim et al. [11] ig-
nored the semantic similarity term as they focused on the
motion trajectory. Alternatively, Rasmussen and Williams
[17] used a zero-mean Gaussian assumption and showed
that the integral boils down to a multivariate Gaussian dis-
tribution. It is, however, an inappropriate suggestion in
our case because no prior information learned from a GPR
model is used to model p(y∗|f∗). Therefore, we augment the
Gaussian assumption by incorporating the prediction results
given by

y∗|f∗ ∼ N (f∗, σ2
nIn∗) (9)

If we assume that the pattern residuals ε = y∗−f∗ follow
an independent, identical Gaussian distribution with varia-
tion σ2

n, Eq. 8 becomes an integral of Gaussian product.
Substituting this into Eq. 8 results in

p(y∗|V∗, Di) =
1

(2π)n
√
|V(f∗)||σ2

nIn∗ |

·
∫

exp
[
−1

2
(f∗ − f̄∗)TV(f∗)−1(f∗ − f̄∗)

− 1

2
(y∗ − f∗)T (

1

σ2
n

In∗)(y∗ − f∗)
]
df∗

(10)



By making use of the general case of Sylvester’s deter-
minant theorem and Woodbury inversion lemma, the log
likelihood of Eq. 10 can be simplified as

log p(y∗|V∗, Di) = −1

2
f̄T∗Σ−1∗ f̄∗ −

1

2
yT
∗Σ−1∗ y∗

+ yT∗Σ−1∗ f̄∗ −
n

2
log 2π − 1

2
log |Σ∗|

(11)

where Σ∗ := V(f∗) + σ2
nIn∗ . A practical implementation

of Eq. 11 is shown in Algorithm 2. We replace the matrix
inversion with the Cholesky decomposition for faster and
numerically stable computation. In case of failure in the
Cholesky decomposition, we relax the input dependences
by discarding the off-diagonal entries in Σ∗.

The computations in Algorithm 2 are mainly contributed
by matrix multiplication. Since the L and α can be pre-
computed in the training period, the overall running time
takes approximately O(n2n∗) provided that n >> n∗.

5.3. Global Anomaly Detection

We next calculate the likelihood of a test ensemble with
respect to the GPR models. The global negative log likeli-
hood (GNLL) of a test ensemble against the kth model is
defined as the average on the point-wise negative log likeli-
hoods given by

Gk(E∗) = − 1

n∗

n∗∑
i=1

log p(y
(i)
∗ |v(i)∗ , Dk) (12)

The nearest neighbor strategy is then invoked to choose
the best-matched GPR model:

k∗ = arg min
k

Gk(E∗). (13)

To precisely locate abnormal events, each STIP within the
test ensemble is assigned with its local negative log likeli-
hood (LNLL) w.r.t. the best-matched GPR model:

yhi = − log p(y
(i)
∗ |v(i)∗ , Dk∗),∀STIPi ∈ R∗. (14)

For point-wise likelihood evaluation, most of the ma-
trix manipulations in Algorithm 2 reduce from polyno-
mial to linear time. Though the computation order re-
mains unchanged, a salient speedup is perceived in practice.
The overall computational time reduces to O(n∗

∑N
k=1 n

2
k)

where nk is the number of STIPs in the kth GPR model.
Fig. 5 computes the likelihoods of three test cases on the
Subway dataset where a large-scale ensemble is adopted to
monitor short-term clips of videos.

To combine the results from local and global anomaly
detectors, the weighted sum is applied:

ŷi = αŷli + (1− α)ŷhi (15)

where α ∈ [0, 1] is the preference factor and ŷli and ŷhi are
the standard scores of yli and yhi as defined in Eq. 1 and
Eq. 14, respectively.

Figure 5: Visual example of global anomaly detection: A
learned GPR model is shown in the first column while test
behaviors are shown in the remaining columns. We inten-
tionally use the rotation-invariant 3DSIFT descriptor such
that these behaviors cannot be distinguished solely using
their patterns (k-NN distances) (the second row) unless the
positional information (the third row) is considered.

6. Experimental Results

We apply the proposed method to three public real-world
datasets: the UCSDped1 [14], Subway [1], QMUL Junc-
tion [12] datasets, as shown in Fig. 6. Tab. 1 describes the
datasets and the percentages of videos we used for training
and testing (GT indicates whether an official ground truth
is provided (Y) or not (N)). The challenge here is to under-
stand dominant behaviors and identify irregular events and
interactions in crowded scenarios which suffer from partial
occlusion and scale variation.

We mainly use the pixel-level and the frame-level proto-
cols [14] to evaluate our work. In the frame-level criterion,
an observed frame is considered true positive if both of the
frame and its ground truth detect anomalies regardless of
the location. In the pixel-level criterion, a true positive is
hit when a frame coincides with its ground truth in which at
least 40% of co-located pixels are identified. ROC curves
are plotted by imposing multiple thresholds on detection re-
sults. We quantify the performances in terms of the equal
error rate (EER) [14] and area under curve (AUC) [13].

To speed up the analysis, we down-sample videos to a
238 × 158 resolution at a frame rate of 5 fps. We choose
a cuboid size of 9 × 9 × 9 for the UCSDped1 dataset, and
13 × 13 × 13 for other datasets as close to objects as pos-
sible. Depending on the scenarios, we adopt an ensemble
of size 41 × 41 × 21 which is affordable for speed or ap-
pearance anomalies in the UCSDPed1 dataset. For other
datasets, we apply large-scale ensembles covering a whole
frame with a duration of about 10 seconds to monitor video
segments with a hope to understand global behaviors. We
conduct experiments using different features and empiri-
cally use 3DSIFT, HOF, HOG on the UCSDped1, Subway,



Table 1: Dataset Description

Dataset Scenario GT Length Train Test

UCSDped1 [14] walkway Y 14000 frames 41% 59%

Subway [1] subway Y 96 minutes 53% 47%

QMUL Junction [12] intersection N 60 minutes 34% 66%

Figure 6: Dataset snapshots and detection results: Ab-
normal events of UCSDped1, Subway, and QMUL Junction
are arranged in the first, second, and third rows, respec-
tively. Local anomalies are indicated with orange bound-
aries and unusual interactions with red boundaries. The
detected anomalies of our method are marked with red re-
gions.

and QMUL Junction datasets, respectively.

6.1. Effect of Data Pruning and Balance

In this subsection, we assess the proposed filtering
scheme described in Sec. 4.2 based on the UCSDped1
dataset. We can note from Fig. 8 that by averaging the off-
diagonal entries in the confusion matrices as a measure of
noise, the proposed GPR method without using the data bal-
ance and pruning schemes (the leftmost matrix in Fig. 8)
can have a noise level of 16.74%. By putting the mentioned
schemes all together (the rightmost matrix in Fig. 8), the
noise level can then be suppressed from 16.74% to 4.32%.

6.2. Comparison With State-of-the-Art Methods

In this subsection, we compare our method with some
previous works including the MDT[14], the OptiFlow Stat
[1], the Local kNN[19], the Sparse Recon [6], the STC [18],
and the IBC [3] methods. For clarity, we use the prefixes
Dense or Sparse in STC [18] and IBC [3] to emphasize that
their models are used to characterize the relationships of
densely-sampled or the STIP features provided by our local
anomaly detector, respectively.

The simulations based on the three data sets are shown
in Fig. 7 and summarized in Tab. 2, and will be elaborated
more in the following subsections. Also, to evaluate the im-

Figure 8: Effect of data pruning and balance: In each
confusion matrix, the rows indicate 12 learned templates,
and the first 12 columns are the normal interactions selected
from members of each templates in the corresponding rows,
and the last 5 columns are the abnormal interactions from
the UCSDped1 dataset. For better visualization, we nor-
malize the topology similarities of each template from low
(black) to high (white). The bottom table provides an index
for each confusion matrix.

pact of the GPR model modeling, the proposed method with
and without the GPR mdeling, referred to as the GPR and
the Sparse Cuboids methods respectively, are both provided
for comparison.

6.2.1 The UCSDped1 dataset

We first evaluate the proposed method based on the UCS-
Dped1 dataset. From the ROC curves shown in Fig. 7a, we
can note that the proposed Sparse Cuboids scheme relies
on the multi-scale STIP detection so that local anomalies
(e.g. biker, car, and skater) with different scales (e.g. small-
scale wheelchair) can well be detected with 72.2% AUC.
Together with the GPR model, our proposed method can
outperform the other methods by an average of 6.8% AUC.
Since we consider the nearby STIPs, the local anomalies
ignored by Sparse Cuboids are likely to be identified. Com-
pared to methods using dense features like Dense STC and
Local kNN, our method based on sparse features achieves
competing results, but with much lower processing time.
Moreover, our GPR method can precisely locate abnormal
events with 63.3% AUC, as shown in Fig. 7b. The STC
method degrades in the localization rate since they treat an
ensemble of densely-sampled patches or STIPs as an atomic
unit and cannot identify whether each of local observations
is abnormal or not. Surprisingly, unnoticed events like two
man talk and suddenly turn left are detected as well, which
have unusual interactions but may not be considered as ab-
normal.

6.2.2 The Subway Dataset

Next, we compare the proposed method with the other
aforementioned methods based on the Subway dataset.
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Figure 7: ROC curves of different methods: Methods with solid curves focus on modeling the relationships between
neighbors. Results from the UCSDped1, Subway, and QMUL Junction datasets based on the frame-level criterion are shown
in (a), (c), (d), respectively. Results from the UCSDped1 dataset based on the pixel-level criterion is shown in (b).

Table 2: Comparisons with other methods

Methods GPR Sparse Cuboids Sparse IBC [3] Sparse STC [18] Dense STC [18] Local kNN [19]

UCSDped1 23.7/83.8a 34.2/72.2 28.2/80.8 30.2/77.9 16.0/89.9 16.0/92.7

Subway 10.9/92.7 20.0/88.9 15.0/91.0 15.7/91.7 15.3/91.1 18.4/89.1

QMUL Junction 24.6/80.9 69.2/27.3 42.7/61.8 42.7/64.5 36.4/68.7 54.3/43.6

UCSDped1 37.3/63.3b 75.0/22.5 45.8/54.9 62.6/36.8 57.7/41.7 51.0/52.0
aEach entry indicates EER(%)/AUC(%) on the frame-level criterion
bEach entry indicates EER(%)/AUC(%) on the pixel-level criterion

From the ROC curves shown in Fig. 7c, we can find that our
GPR method achieves the highest detection rate with 92.7%
AUC while our Sparse Cuboids method can sufficiently de-
tect the no payment and wrong direction events. The im-
provement testifies the robustness of the GPR model to
noise by considering the nearby noise-prone optical flows.

6.2.3 The QMUL Junction Dataset

Finally, we compare the proposed method with the other
two closely related methods: the STC [18] and the IBC
[3] methods based on the QMUL Junction dataset. From
the ROC curves shown in Fig. 7d, we can observe that our
method outperforms the IBC [3] and STC [18] approaches
by at least 12% AUC. This is due to the fact that the para-
metric model in the Sparse IBC approach requires to initial-
ize the covariance matrices while the Sparse STC method
may encounter the curse of dimensionality when approxi-
mating an ensemble topology. Our Sparse Cuboids method
cannot provide satisfactory results as accidents like jay-
walking and traffic interruption usually involve with mul-
tiple events.

6.3. Computational Complexity

We compare the computational time of our model with
the STC [18] and the IBC [3] methods based on the UCS-
Dped1 dataset. All of the methods are implemented in the
MATLAB environment on a computer with Core i7-2600
CPU and 4GM RAM. No particular programming tech-
nique is used, except our method is using the GPML tool-
box [17]. As shown in Tab. 3, the high-level codebook

Table 3: Computational Time (ms per train/test ensemble)

Models Learning Inferring

G
PR

Sparse Cuboids 18.4 6.4
Ensembles acquirement 91.7 88.6

High-level codebook construction 29.5 -
Hyper-parameter estimation 0.6 -

GNLL computation - 420.3
Total 140.2 515.3

Sparse IBC [3] 3.6 9818.3
Sparse STC [18] 139.8 96
Dense STC [18] 2432.5 2424.1

construction takes 65.4% of the entire learning time. The
processing time of Sparse Cuboids contains interest point
detection, feature extraction, vector quantization, and k-NN
computation. Our method takes approximately 0.5 seconds
for inference, which is time-affordable as there are 300 or
so ensembles per test video. For the Sparse IBC method, it
requires less learning time at the expense of significant in-
ference time (9 seconds). The Sparse STC is efficient but its
dense version requires about five times of the running time
required by our method.

7. Conclusions
This paper provides a hierarchical framework for lo-

cal and global anomalies detection. We rely on a greedy
method and Gaussian process regression to cluster, learn,
and infer the semantic (appearance) and structural (position)
relationships of the nearby STIPs. Our method achieves
at least 80% detection rate based on the three challeng-
ing datasets and provides competing performance compared
with previous works that characterize the relationships of
densely-sampled patches while maintaining much lower
space and time complexity.
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