
Deeply learned face representations are sparse, selective, and robust

Yi Sun1 Xiaogang Wang2,3 Xiaoou Tang1,3

1Department of Information Engineering, The Chinese University of Hong Kong
2Department of Electronic Engineering, The Chinese University of Hong Kong
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

sy011@ie.cuhk.edu.hk xgwang@ee.cuhk.edu.hk xtang@ie.cuhk.edu.hk

Abstract

This paper designs a high-performance deep convo-
lutional network (DeepID2+) for face recognition. It
is learned with the identification-verification supervisory
signal. By increasing the dimension of hidden repre-
sentations and adding supervision to early convolutional
layers, DeepID2+ achieves new state-of-the-art on LFW
and YouTube Faces benchmarks.

Through empirical studies, we have discovered three
properties of its deep neural activations critical for the high
performance: sparsity, selectiveness and robustness. (1) It
is observed that neural activations are moderately sparse.
Moderate sparsity maximizes the discriminative power of
the deep net as well as the distance between images. It is
surprising that DeepID2+ still can achieve high recognition
accuracy even after the neural responses are binarized. (2)
Its neurons in higher layers are highly selective to identities
and identity-related attributes. We can identify different
subsets of neurons which are either constantly excited or
inhibited when different identities or attributes are present.
Although DeepID2+ is not taught to distinguish attributes
during training, it has implicitly learned such high-level
concepts. (3) It is much more robust to occlusions, although
occlusion patterns are not included in the training set.

1. Introduction
Face recognition achieved great progress thanks to ex-

tensive research effort devoted to this area [31, 33, 6, 24,
37, 27, 25, 23, 38]. While pursuing higher performance is
a central topic, understanding the mechanisms behind it is
equally important. When deep neural networks begin to ap-
proach human on challenging face benchmarks [27, 25, 23]
such as LFW [13], people are eager to know what has been
learned by these neurons and how such high performance is
achieved. In cognitive science, there are a lot of studies [30]
on analyzing the mechanisms of face processing of neurons
in visual cortex. Inspired by those works, we analyze the

Figure 1: Left: neural responses of DeepID2+ on images
of Bush and Powell. The second face is partially occluded.
There are 512 neurons in the top hidden layer of DeepID2+.
We subsample 32 for illustration. Right: a few neurons
are selected to show their activation histograms over all
the LFW face images (as background), all the images
belonging to Bush, all the images with attribute Male, and
all the images with attribute Female. A neuron is generally
activated on about half of the face images. But it may
constantly have activations (or no activation) for all the
images belonging to a particular person or attribute. In this
sense, neurons are sparse, and selective to identities and
attributes.

behaviours of neurons in artificial neural networks in a
attempt to explain face recognition process in deep nets,
what information is encoded in neurons, and how robust
they are to corruptions.

Our study is based on a high-performance deep convo-
lutional neural network (deep ConvNet [15, 16]), referred
to as DeepID2+, proposed in this paper. It is improved
upon the state-of-the-art DeepID2 net [23] by increasing the
dimension of hidden representations and adding supervision
to early convolutional layers. The best single DeepID2+
net (taking both the original and horizontally flipped face
images as input) achieves 98.70% verification accuracy on
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LFW (vs. 96.72% by DeepID2). Combining 25 DeepID2+
nets sets new state-of-the-art on multiple benchmarks:
99.47% on LFW for face verification (vs. 99.15% by
DeepID2 [23]), 95.0% and 80.7% on LFW for closed- and
open-set face identification, respectively (vs. 82.5% and
61.9% by Web-Scale Training (WST) [28]), and 93.2%
on YouTubeFaces [32] for face verification (vs. 91.4% by
DeepFace [27]).

With the state-of-the-art deep ConvNets and through
extensive empirical evaluation, we investigate three proper-
ties of neural activations crucial for the high performance:
sparsity, selectiveness, and robustness. They are naturally
owned by DeepID2+ after large scale training on face data,
and we did NOT enforce any extra regularization to the
model and training process to achieve them. Therefore,
these results are valuable for understanding the intrinsic
properties of deep networks.

It is observed that the neural activations of DeepID2+
are moderately sparse. As examples shown in Fig. 1,
for an input face image, around half of the neurons in the
top hidden layer are activated. On the other hand, each
neuron is activated on roughly half of the face images.
Such sparsity distributions can maximize the discriminative
power of the deep net as well as the distance between
images. Different identities have different subsets of
neurons activated. Two images of the same identity have
similar activation patterns. This motivates us to binarize the
neural responses in the top hidden layer and use the binary
code for recognition. Its result is surprisingly good. Its
verification accuracy on LFW only slightly drops by 1%
or less. It has significant impact on large-scale face search
since huge storage and computation time is saved. This also
implies that binary activation patterns are more important
than activation magnitudes in deep neural networks.

Related to sparseness, it is also observed that neurons in
higher layers are highly selective to identities and identity-
related attributes. When an identity (who can be outside
the training data) or attribute is presented, we can identify
a subset of neurons which are constantly excited and also
can find another subset of neurons which are constantly
inhibited. A neuron from any of these two subsets has
strong indication on the existence/non-existence of this
identity or attribute, and our experiment show that the single
neuron alone has high recognition accuracy for a particular
identity or attribute. In other words, neural activations have
sparsity on identities and attributes, as examples shown in
Fig. 1. Although DeepID2+ is not taught to distinguish at-
tributes during training, it has implicitly learned such high-
level concepts. Directly employing the face representation
learned by DeepID2+ leads to much higher classification
accuracy on identity-related attributes than widely used
handcrafted features such as high-dimensional LBP [6].

Our empirical study shows that neurons in higher layers

are much more robust to image corruption in face recog-
nition than handcrafted features such as high-dimensional
LBP or neurons in lower layers. As an example shown in
Fig. 1, when a face image is partially occluded, its binary
activation patterns remain stable, although the magnitudes
could change. We conjecture the reason might be that
neurons in higher layers capture global features and are less
sensitive to local variations. DeepID2+ is trained by natural
web face images and no artificial occlusion patterns were
added to the training set.

2. Related work

Only very recently, deep learning achieved great success
on face recognition [27, 25, 23] and significantly outper-
formed systems using low level features [2, 22, 6, 4]. There
are two notable breakthroughs. The first is large-scale
face identification with deep neural networks [27, 25]. By
classifying face images into thousands or even millions
of identities, the last hidden layer forms features highly
discriminative to identities. The second is supervising
deep neural networks with both face identification and
verification tasks [23]. The verification task minimizes
the distance between features of the same identity, and
decreases intra-personal variations [23]. By combining
features learned from a variety of selected face regions,
[23] achieved the previous state-of-the-art (99.15%) face
verification on LFW.

Attribute learning is an active topic [9, 21, 20, 36].
There have been works on first learning attribute classifiers
and using attribute predictions for face recognition [14, 7].
What we have tried in this paper is the inverse, by first
predicting the identities, and then using the learned identity-
related features to predict attributes.

Sparse representation-based classification [33, 34, 35,
8] was extensively studied for face recognition with oc-
clusions. Tang et al. [29] proposed Robust Boltzmann
Machine to distinguish corrupted pixels and learn latent
representations. These methods designed components
explicitly handling occlusions, while we show that features
learned by DeepID2+ have implicitly encoded invariance
to occlusions. This is naturally achieved without adding
regulation to models or artificial occlusion patterns to
training data.

Training deep neural networks with layer-wise supervi-
sory signals was proposed and analysed by Lee et al. [17].
Our DeepID2+ nets are supervised in a similar way, but
with different net structures and supervisory signals. The
binarization of deep ConvNet features has been found to
keep performance in object recognition [1], while we focus
on face recognition and find the more interesting moderate
sparsity property.
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Figure 2: DeepID2+ net and supervisory signals. Conv-n
deneotes the n-th convolutional layer (with max-pooling).
FC-n denotes the n-th fully connected layer. Id and
Ve denote the identification and verification supervisory
signals. Blue arrows denote forward-propagation. Yellow
arrows denote supervisory signals. Nets in the left and right
are the same DeepID2+ net with different input faces.

3. DeepID2+ nets
DeepID2+ nets are inherited from DeepID2 [23] with

four convolutional layers, the first three of which are
followed by max-pooling, and 55 × 47 and 47 × 47 input
dimensions for rectangle and square face regions, respec-
tively. However, DeepID2+ nets make three improvements
over DeepID2 as following. First, DeepID2+ nets are larger
with 128 feature maps in each of the four convolutional
layers. The final feature representation is also increased to
512 dimensions. Second, our training data is enlarged by
merging the CelebFaces+ dataset[25], the WDRef dataset
[5], and some newly collected identities exclusive from
LFW. The larger DeepID2+ net is trained with around
290, 000 face images from 12, 000 identities compared
to 160, 000 images from 8, 000 identities used to train
the DeepID2 net. Third, we enhance the supervision by
connecting a 512-dimensional fully-connected layer to each
of the four convolutional layers (after max-pooling for the
first three convolutional layers), denoted as FC-n for n =
1, 2, 3, 4, and supervise these four fully-connected layers
with the identification-verification supervisory signals [23]
simultaneously as shown in Fig. 2.

4. High-performance of DeepID2+ nets
To verify the improvements, we train 25 DeepID2+ nets

taking the same 25 face regions selected by DeepID2 [23]
and test on the LFW face verification task [13]. Features in
the FC-4 layer of DeepID2+ are extracted, based on which

Figure 3: Comparison of face verification accuracies on
LFW with ConvNets trained on 25 face regions given in
DeepID2 [23]

Joint Bayesian [5] is trained on 2000 people in our training
set (exclusive from people in LFW) for face verification.
The comparison between the 25 deep ConvNets is shown in
Fig. 3 (features are extracted on either the original or the
horizontally flipped face regions as shown in Fig. 2 in [23]
in the comparison). DeepID2+ nets improve approximately
2% face verification accuracy on average over DeepID2.

When combining FC-4 layer features extracted from all
the 25 face regions and their horizontally flipped counter-
parts with the 25 DeepID2+ nets, respectively, we achieve
99.47% and 93.2% face verification accuracies on LFW
and YouTube Faces datasets, respectively. Tab. 1 and
Tab. 2 are accuracy comparisons with the previous best
results on the two datasets. Fig. 4 and Fig. 5 are the
ROC comparisons. Our DeepID2+ nets outperform all
the previous results on both datasets. There are a few
wrongly labeled test face pairs in LFW and YouTubeFaces.
After correction, our face verification accuracy increases to
99.52% on LFW and 93.8% on YouTubeFaces.

Face identification is a more challenging task to evaluate
high-performance face recognition systems [28]. Therefore
we further evaluate the 25 DeepID2+ nets on the closed-
and open-set face identification tasks on LFW, following
the protocol in [3]. The closed-set identification reports the
Rank-1 identification accuracy while the open-set identifi-
cation reports the Rank-1 Detection and Identification rate
(DIR) at a 1% False Alarm Rate (FAR). The comparison
results are shown in Tab. 3. Our results significantly
outperform the previous best [28] with 95.0% and 80.7%
closed and open-set identification accuracies, respectively.

5. Moderate sparsity of neural activations

Neural activations are moderately sparse in both the
sense that for each image, there are approximately half of
the neurons which are activated (with positive activation
values) on it, and for each neuron, there are approximately
half of the images on which it is activated. The moderate
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Table 1: Face verification on LFW.

method accuracy (%)

High-dim LBP [6] 95.17± 1.13
TL Joint Bayesian [4] 96.33± 1.08
DeepFace [27] 97.35± 0.25
DeepID [25] 97.45± 0.26
GaussianFace [19] 98.52± 0.66
DeepID2 [23] 99.15± 0.13
DeepID2+ 99.47± 0.12

Table 2: Face verification on YouTube Faces.

method accuracy (%)

LM3L [12] 81.3± 1.2
DDML (LBP) [11] 81.3± 1.6
DDML (combined) [11] 82.3± 1.5
EigenPEP [18] 84.8± 1.4
DeepFace-single [27] 91.4± 1.1
DeepID2+ 93.2± 0.2

Figure 4: ROC of face verification on LFW. Best viewed in
color.

Figure 5: ROC of face verification on YouTube Faces. Best
viewed in color.

sparsity on images makes faces of different identities
maximally distinguishable, while the moderate sparsity

Table 3: Closed- and open-set identification tasks on LFW.

method Rank-1 (%) DIR @ 1%
FAR (%)

COTS-s1 [3] 56.7 25
COTS-s1+s4 [3] 66.5 35
DeepFace [27] 64.9 44.5
WST Fusion [28] 82.5 61.9
DeepID2+ 95.0 80.7

on neurons makes them to have maximum discrimination
abilities. We verify this by calculating the histogram of the
activated neural numbers on each of the 46, 594 images in
our validating dataset (Fig. 6 left), and the histogram of
the number of images on which each neuron are activated
(Fig. 6 right). The evaluation is based on the FC-4 layer
neurons in a single DeepID2+ net taking the entire face
region as input. Compared to all 512 neurons in the FC-
4 layer, the mean and standard deviation of the number of
activated neurons on images is 292 ± 34, while compared
to all 46, 594 validating images, the mean and standard
deviation of the number of images on which each neuron are
activated is 26, 565±5754, both of which are approximated
centered at half of all neurons/images. Our experiments also
show that the sparsity level is not affected by the dropout
rate [10]. We take dropout of FC-n layer neurons during
training. The moderate sparsity property holds for different
dropout rates as well as without dropout learning. 50%
dropout rate is chosen for DeepID2+.

Figure 6: Left: the histogram of the number of activated
neurons for each of the validating images. Right: the
histogram of the number of images on which each neuron is
activated.

We further verify that the activation patterns, i.e.,
whether neurons are activated, are more important than
precise activation values. We convert neural activations to
binary code by thresholding and compare its face verifica-
tion ability on LFW to that of the original representation.
As shown in Tab. 4, the binary representation, when cou-
pled with Joint Bayesian, sacrifices 1% or less accuracies
(97.67% and 99.12% with a single net or combining 25
nets, respectively). More interestingly, the binary code can
still achieve 96.45% and 97.47% accuracy with a single
net or combining 25 nets, respectively, even by directly
calculating the Hamming distances. This shows that the
state of excitation or inhibition of neurons already contains
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Table 4: Comparison of the original DeepID2+ features and
its binarized representation for face verification on LFW.
The first two rows of results are accuracies of the original
(real-valued) FC-4 layer representation of a single net (real
single) and of the 25 nets (real comb.), respectively, with
Joint Bayesian as the similarity metrics. The last two
rows of results are accuracies of the corresponding binary
representations, with Joint Bayesian or Hamming distance
as the similarity metrics, respectively.

Joint Bayesian
(%)

Hamming dis-
tance (%)

real single 98.70 N/A
real comb. 99.47 N/A
binary single 97.67 96.45
binary comb. 99.12 97.47

the majority of discriminative information. Binary code is
economic for storage and fast for image search. We believe
this would be an interesting direction of future work.

6. Selectiveness on identities and attributes
6.1. Discriminative power of neurons

We test DeepID2+ features for two binary classification
tasks. The first is to classify the face images of one person
against those of all the other people or the background.
The second is to classify a face image as having an
attribute or not. DeepID2+ features are taken from the
FC-4 layer of a single DeepID2+ net on the entire face
region and its horizontally flipped counterpart, respectively.
The experiments are conducted on LFW [13] with people
unseen by the DeepID2+ net during training. LFW is
randomly split into two subsets and the cross-validation
accuracies are reported. The accuracies are normalized
w.r.t. the image numbers in the positive and negative classes.
We also compare to the high-dimensional LBP features
[6] with various feature dimensions. As shown in Fig.
7, DeepID2+ features significantly outperform LBP in
attribute classification (it is not surprising that DeepID2+
has good identity classification result). Fig. 8 and Fig.
9 show identity and attribute classification accuracies with
only one best feature selected. Different best features
are selected for different identities (attributes). With a
single feature (neuron), DeepID2+ reaches approximately
97% for some identity and attribute. This is the evidence
that DeepID2+ features are identity and attribute selective.
Apparently LBP does not have it.

6.2. Excitatory and inhibitory neurons

We find that the discrimination to identities and facial
attributes are due to neurons’ excitation and inhibition
patterns on certain identities or attributes. For example,

Figure 7: Accuracy comparison between DeepID2+ and
LBP features for attribute classification on LFW.

Figure 8: Identity classification accuracy on LFW with one
single DeepID2+ or LBP feature. Initials of identity names
are used.

Figure 9: Attribute classification accuracy on LFW with one
single DeepID2+ or LBP feature.

a neuron may be excited when it sees George Bush while
becoming inhibitive when it sees Colin Powell, or a neuron
may be excited for western people while being inhibitive for
Asian. Fig. 10a compares the mean and standard deviation
of DeepID2+ neural activations over images belonging
to a particular single identity (left column) and over the
remaining images (middle column), as well as showing the
per-neuron classification accuracies of distinguishing each
given identity from the remaining images (right column).
The three identities with the most face images in LFW
are evaluated (see more identities in the full version of the
paper [26]). Neural orders are sorted by the mean neural
activations on the evaluated identity for figures in all the
three columns. For each given identity there are neurons
strongly excited (e.g., those with neural ID smaller than
200) or inhibited (e.g., those with neural ID larger than 600).
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For the excited neurons, their activations are distributed in
higher values, while other images have significantly lower
mean values on these neurons. Therefore, the excitatory
neurons can easily distinguish an identity from others,
which is verified by their high classification accuracies
shown by the red dots with small neural IDs in figures in
the right column.

For neurons ranked in the middle (e.g., those with
neural ID around 400), their activation distributions on the
given identity are largely overlapped with those on other
identities. They have weak discrimination abilities for the
given identity, verified by the low accuracies of the red and
blue dots near the junction of the two colors. The excitation
or inhibition state of these neurons has much uncertainty.

When mean activations further decrease (e.g., neural ID
above 600), the neurons demonstrate inhibitory properties,
and are seldom activated for the given identity compared to
others. These inhibitory neurons also have discrimination
abilities with relatively high classification accuracies.

However, similar phenomena cannot be found on LBP
features as shown in Fig. 10b. The activation distributions
of LBP features on given identities and the remaining
images are overlapped for all features. A LBP feature
with high responses on images belonging to an identity
also has high responses on other images. Compared to
DeepID2+ neural activations, LBP features have much
lower classification accuracies, the majority of which are
accumulated on the 50% random guess line. The same
conclusion can applied to attributes shown in Fig. 11a and
Fig. 11b (see more examples and discussions of attributes
in the full version [26]).

6.3. Neural activation distribution

Fig. 12 and Fig. 13 show examples of the histograms
of neural activations over given identities or attributes.
Fig. 12 also shows the histograms over all images of
five randomly selected neurons in the first row. For each
neuron, approximately half of its activations are zero (or
close to zero) and the other half have larger values. In
contrast, the histograms over given identities exhibit strong
selectiveness. Some neurons are constantly activated for
a given identity, with activation histograms distributed in
positive values, as shown in the first row of histograms of
each identity in Fig. 12, while some others are constantly
inhibited, with activation histograms accumulated at zero or
small values, as shown in the second row of histograms of
each identity.

For attributes, in each column of Fig. 13a and 13b, we
show histograms of a single neuron over a few attributes,
i.e., those related to sex and race, respectively. The neurons
are selected to be excitatory (in red frames) or inhibitory
(in green frames) and can best classify the attribute shown
in the left of each row. As shown in these figures, neurons

(a) DeepID2+ neural activation distributions and per-neuron clas-
sification accuracies.

(b) LBP feature activation distributions and per-feature classifica-
tion accuracies.

Figure 10: Comparison of distributions of DeepID2+
neural and LBP feature activations and per-neuron (feature)
classification accuracies for the top three people with
the most face images in LFW. Left column: mean and
standard deviations of neural (feature) activations on images
belonging to a single identity. Mean is represented by
a red line while standard deviations are represented by
vertical segments between (mean − standard deviation) and
(mean + standard deviation). Neurons (features) are sorted
by their mean activations on the given identity. Middle
column: mean and standard deviations of neural (feature)
activations on the remaining images. Neural (feature)
orders are the same as those in the left column. Right
column: per-neuron (feature) classification accuracies on
the given identity. Neural (feature) orders are the same as
those in the left and middle columns. Neurons (features)
activated and inhibited for a given identity are marked as
red and blue dots, respectively.

exhibit strong selectiveness (either activated or inhibited)
to certain attributes, in which the neurons are activated
(inhibited) for the given attribute while inhibited (activated)
for the other attributes in the same category. In the full
version of the paper [26] we show distribution histograms
over more identities and attributes.

7. Robustness of DeepID2+ features
We test the robustness of DeepID2+ features on face

images with occlusions. In the first setting, faces are
partially occluded by 10% to 70% areas, as illustrated in
Fig. 14 first row. In the second setting, faces are occluded
by random blocks of 10 × 10 to 70 × 70 pixels in size,
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(a) DeepID2+ neural activation distributions and per-neuron
classification accuracies.

(b) LBP feature activation distributions and per-feature classifi-
cation accuracies.

Figure 11: Comparison of distributions of DeepID2+ neural
and LBP feature activations and per-neuron (feature) classi-
fication accuracies of face images of particular attributes in
LFW. Figure description is the same as Fig. 10.

Figure 12: Histogram of neural activations. First row:
activation histograms over all face images of five randomly
selected neurons, with neural ID labeled above each his-
togram. Second to the last row: activation histograms over
the two people with the most face images in LFW. For
each person, histograms of five excitatory neurons (second
and fourth rows) and five inhibitory neurons (third and fifth
rows) with the highest binary classification accuracies of
distinguishing the given identity and the remaining images
are shown. People names are given in the left of every two
rows. Neural ID and classification accuracies are shown
above each histogram.

as illustrated in Fig. 14 second row. In the occlusion
experiments, DeepID2+ nets and Joint Bayesian models
are learned on the original face images in our training

(a) Histogram of neural activations over sex-related attributes
(Male and Female).

(b) Histogram of neural activations over race-related attributes,
i.e., White, Black, Asian, and Indian.

Figure 13: Histogram of neural activations over attributes.
Each column of Fig. 13a and Fig. 13b shows histograms
of a single neuron over each of the attributes given in the
left, respectively. Histograms of excitatory and inhibitory
neurons which best distinguish each attribute from the re-
maining images are shown, and are framed in red and green,
respectively, with neural ID and classification accuracies
shown above each histogram. The other histograms are
framed in black with only neural ID above.

set without any artificially added occlusions, while the
occluded faces are only used for test. We also test the high-
dimensional LBP features plusing Joint Bayesian models
[6] for comparison. Fig. 15 compares the face verification
accuracies of DeepID2+ and LBP features on LFW test
set [13] with varying degrees of partial occlusion. The
DeepID2+ features are taken from the FC-1 to FC-4 layers
with increasing depth in a single DeepID2+ net taking the
entire face region as input. We also evaluate our entire
face recognition system with 25 DeepID2+ nets. The high-
dimensional LBP features compared are 99, 120 dimensions
extracted from 21 facial landmarks. As shown in Fig.
15, the performance of LBP drops dramatically, even with
slight 10% - 20% occlusions. In contrast, for the DeepID2+
features with two convolutions and above (FC-2, FC-3, and
FC-4), the performance degrades slowly in a large range.
Face verification accuracies of DeepID2+ are still above
90% when 40% of the faces are occluded (except FC-1
layer), while the performance of LBP features has dropped
below 70%. The performance of DeepID2+ only degrades
quickly with over 50% occlusions, when the critical eye
regions are occluded. It also shows that features in higher
layers (which are supposed to be more globally distributed)
are more robust to occlusions, while both LBP and FC-
1 are local features, sensitive to occlusions. Combining
DeepID2+ nets extracted from 25 face regions achieves the
most robustness with 93.9% face verification accuracy with
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Figure 14: The occluded images tested in our experiments.
First row: faces with 10% to 70% areas occluded, respec-
tively. Second row: faces with 10 × 10 to 70 × 70 random
block occlusions, respectively.

Figure 15: Face verification accuracies of DeepID2+ and
high-dimensional LBP on LFW with partial occlusions.
The red, green, blue, and magenta curves evaluate the
features of a single DeepID2+ net, extracted from various
network depth (from FC-4 to FC-1 layer). We also evaluate
the combination of 25 DeepID2+ net FC-4 layer features,
shown by the black curve.

Figure 16: Face verification accuracies of DeepID2+ and
high-dimensional LBP on LFW with random block occlu-
sions. Curve description is the same as Fig. 15.

40% occlusions and 88.2% accuracy even only showing the
forehead and hairs.

We also evaluate face verification of DeepID2+ and LBP
features over face images with random block occlusions,
with n × n block size for n = 10 to 70, respectively. This
setting is challenging since the positions of the occluded
regions in two faces to be verified are generally different.
Therefore images of the same person would look much
different in the sense of pixel distances. Fig. 16 shows

Figure 17: Mean neural activations over images of George
Bush with partial (first row) or random block (second row)
occlusions as illustrated in Fig. 14. Neurons are sorted
by their mean activations on the original images of Bush.
Activation values are mapped to a color map with warm
colors indicating positive values and cool colors indicating
zero or small values.

the comparison results, the accuracies of LBP features
begin to drop quickly when block sizes are greater than
20 × 20, while DeepID2+ features (except FC-1) maintain
the performance in a large range. With 50 × 50 block
occlusions, the performance of LBP features has dropped
to approximately 70%, while the FC-4 layer of a single
DeepID2+ net still has 89.2% accuracy, and the combi-
nation of 25 DeepID2+ nets has an even higher 92.4%
accuracy. Again, the behavior of features in the shallow FC-
1 layer are closer to LBP features. The above experiments
show that it is the deep structure that makes the neurons
more robust to image corruptions. Such robustness is
inherent in deep ConvNets without explicit modelings.

Fig. 17 shows the mean activations of FC-4 layer
neurons over images of a single identity (George Bush) with
various degrees of partial and random block occlusions,
respectively. The neurons are ordered according to their
mean activations on the original images. For both types
of occlusions, activation patterns keep largely unchanged
until a large degree of occlusions. See examples of more
identities in the full version [26].

8. Conclusion
This paper designs a high-performance DeepID2+ net

which sets new sate-of-the-art on LFW and YouTube Faces
for both face identification and verification. Through empir-
ical studies, it is found that the face representations learned
by DeepID2+ are moderately sparse, highly selective to
identities and attributes, and robust to image corruption.
In the past, many research works have been done aiming
to achieve such attractive properties by explicitly adding
components or regularizations to their models or systems.
However, they can be naturally achieved by the deep model
through large-scale training. This work not only signifi-
cantly advances the face recognition performance, but also
provides valuable insight to help people to understand deep
learning and its connection with many existing computer
vision researches such as sparse representation, attribute
learning and occlusion handling.
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