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Abstract

Registration between images taken with different cam-
eras, from different viewpoints or under different lighting
conditions is a challenging problem. It needs to solve not
only the geometric registration problem but also the photo-
metric matching problem. In this paper, we propose to esti-
mate the integrated geometric and photometric transforma-
tions between two images based on a local affine Fourier-
moment matching framework, which is developed to achieve
deformable registration. We combine the local Fourier mo-
ment constraints with the smoothness constraints to deter-
mine the local affine transforms in a hierarchal block model.
Our experimental results on registering some real images
related by large color and geometric transformations show
the proposed registration algorithm provides superior im-
age registration results compared to the state-of-the-art im-
age registration methods.

1. Introduction

Image registration is a very fundamental problem in
many fields [5][27], such as computer vision, image pro-
cessing, computer graphics, and so on. However, im-
ages could be acquired from different sensors, with differ-
ent camera acquisition settings, under different illumination
conditions, or from different viewpoints. Therefore, the in-
tensities and colors may not have the same distributions be-
tween the images to be registered [18], which makes the tra-
ditional geometric registration [8][12] methods easy to fail.
Figure 1 shows this kind of image registration problems
with very different illumination conditions. For example,
some images capture the same scene at different time, such
as different mountain views acquired in summer or winter,
and the city view changes with differen traffic flows. Partial
matching is another challenging problem for image regis-
tration.

Figure 1. Reference, target images and its warp and overlapping
area

An available strategy is to model and correct the appear-
ance variations under different imaging conditions before
registering images. Color optical flow [2][23], Eigenflows
[19] and NRDC [25] were proposed to transform a target
image to similar color distribution as that of the reference
image for color transforms and photometrically invariant
image representations. However, modeling all possibilities
of appearance variations is impossible, thus the registration
problem become very challenging when the color images
contain large exposure differences or there are few corre-
sponding points between two images.

Hence most previous research works dealing with the
image registration taken under different camera and envi-
ronment conditions are based on feature point correspon-
dences. The SIFT-based feature matching approach [17],
such as SURF [4], A-SIFT [20], SIFT flow [16] and CSIFT
[1], is robust against lighting changes and can be considered
a weak form of photometric invariance [15]. Although the
SIFT-based feature matching is robust against illumination
changes, the accuracy of feature point matching degrades
as the appearance variation increases. In fact, the accuracy
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for the registration of images acquired from different sen-
sors or lighting conditions is usually quite limited [3]. A
recent method proposed by Lin et al. [15], similar to SIFT
flow, can deal with both photometric and geometric regis-
tration problems. However, their method is also based on
the feature matching, and it is quite complicated and com-
putationally expensive.

Another common approach for image registration
[8][12] is based on minimizing cost functions defined by
specific image distance measures, such as gradient-based
method [6], histogram color mapping [24][13] and non-
linear matching on tone mapping (MTM) [9]. The image
distance measure is very crucial to the accuracy of image
registration. MTM was proposed and proved to perform
quite well for image registration with tone mapping. The
performance of image registration is limited by the assump-
tion implied in the cost function to be optimized. Shen
et al. [21] proposed a new measure, called robust selec-
tive normalized cross correlation (RSNCC), which is com-
bined with optical flow to register different types of images,
and their method can deal with this problem well. Another
idea is to resolve the geometric and photometric registra-
tion problems in the same framework, such as Kovalsky et
al. [14]. They used a non-linear method to correct the color
transform and employed a global affine model for geometric
registration.

In this paper, we propose a weighted overlapping local
affine image registration algorithm based on the Fourier mo-
ment matching (FMM) [22]. The proposed algorithm can
not only deal with the image photometric and geometric
transforms concurrently, but also deal with partial matching
by using the weighted local affine model. The transform
parameters can be solved by the proposed hierarchical ap-
proach. In addition, our method is more efficient than the
previous methods in our experiments.

2. Main Contributions
FMM [22] is based on the fact that the affine transform

between two images corresponds to a related affine trans-
form between their Fourier spectrums, whose energies are
normally concentrated around the origin in the frequency
domain. Then, the affine transform can be solved by mini-
mizing the affine relationship between the moments for the
Fourier spectrums of the two images. FMM can be ap-
plied to 2D and 3D images easily. Hence, the photometric
transform between two images can be considered as three-
dimensional color histogram registration with L, a, and b
color axis and the intensity from their corresponding fre-
quency of Lab color in each image pixel. By integrating the
2D geometric image registration and 3D photometric align-
ment based on the Fourier moment matching, we can re-
solve the affine image registration problem under different
illumination.

In order to make the algorithm more applicable for
different viewpoint change, image distortion or image
stitching, we propose a two-step hierarchal framework for
weighted overlapping local affine registration based on
FMM. The first step is to find the coarse corresponding
area between two images by using the image block voting
method on their corresponding edge maps, followed by es-
timating the global affine parameters in the photometric and
geometric transforms by using the FMM. The second step
is to find the accurate location for each pixel in images by
partitioning the images into small overlapping blocks, and
each block is associated with its own local affine parame-
ters, which are determined by minimizing an energy func-
tion consisting of the FMM constraints and spatial smooth-
ness constraints for the local affine parameters. By using a
hierarchal scheme to decompose the image into blocks from
a coarse scale to a fine scale, we can estimate the local affine
parameters efficiently.

In order to increase the registration accuracy, we also use
the edge information in the proposed method. We consider
the photometric and geometric registration both in the inten-
sity and edge information. We also add a weight function
in each overlapping local affine to increase the accuracy es-
pecially for partial matching. In addition, local affine mod-
els in a hierarchal framework can increase the accuracy but
need more time complexity. We can speed up the algorithm
based on the property of the hierarchal framework. Our con-
tributions in this paper can be summarized as follows:

1. We extend the FMM-based global affine registration to
the hierarchical local affine model for non-rigid regis-
tration to deal with both the photometric and geometric
registration.

2. We propose a two-step hierarchal estimation frame-
work to estimate the local affine parameeters.

3. In each block of FMM constraints, we adaptively com-
bine the edge information and color information for
estimating each local affine model to improve the reg-
istration accuracy.

The rest of this paper is organized as follows: in the next
section, the proposed FMM framework for image registra-
tion is introduced. Subsequently, we extend it for non-rigid
registration by using a weighted overlapping local affine
model in section 3. Experimental results are given in section
4 to demonstrate the proposed image registration algorithm.
Finally, we conclude this paper in section 5.

3. Affine FMM in photometric and geometric
registration

In this section, we describe the proposed algorithm in
detail. The proposed framework for photometric and geo-
metric image registration is based on using the FMM [22].



FMM is applied on an affine model and can be extended
from 2D to 3D space. For image registration, geometric reg-
istration can be estimated by the 2D FMM, and photomet-
ric registration can be regarded as matching between two
3D color histograms, which can also be estimated by the
3D FMM. In addition, we convert the images from RGB to
Lab color system, which has better linearity than other color
spaces [7]. Thus we approximate the photometric transfor-
mation between images with an affine transform in the Lab
space. In this framework, we integrate the 2D and 3D FMM
into one system for simultaneous geometric and photomet-
ric registration.

3.1. Affine Relationship between Images and their
corresponding Fourier Spectrums

Consider two images f1(x) and f2(y), x,y ∈ Rn and
n = 2 or 3, which are related by an affine transformation,
f1(x) = f2(y), with

y = Ax+ t (1)

where A is an n × n invertible matrix and corresponds to
the linear part of the affine transformation in eq.1. t is a
n × 1 translation vector. Assume the Fourier transforms of
f1(x) and f2(y) are denoted by F1(ξ) and F2(η), respec-
tively. Then, we can derive the following affine relationship
between the Fourier transforms F1(ξ) and F2(η)

|F1(ξ)| =
1

|4|
|F2(η)| (2)

where ξ = AT η and | 4 | is the determinant of the inverse
of the transpose of A.

The matrix A can be solved by the Fourier moment
matching technique [22]. From eq. (2), we can see the
Fourier spectrums of two images related by an affine trans-
form are also related by the corresponding affine transform
and the translation vector t does not appear in eq. (2).
Hence, after the invertible transform matrix A is estimated,
we can obtain the transformed image f

′

2(x) and f2(Ax). By
minimizing the sum of square error (SSE) between two im-
ages, we can estimate the remaining translation vector t as
follows:

t = argmin
t
||f

′

2(x+ δx)− f1(x)||2 (3)

3.2. 2D FMM for geometric registration

For 2D image registration, i.e. n = 2, we denote the
invertible matrix A and translation vector t as follows:

A =

[
a d
b e

]
, t =

[
c
f

]
(4)

The (α+β)-th moment for the Fourier spectrum |Fk(u, v)|,
k = 1 or 2, is defined as

mk
α,β =

∫ ∫
uαvβ |Fk(u, v)|dudv (5)

With coordinate substitution, we can derive the following
relationship for the first-order moments.

M1
1 =

[
m1

1,0

m1
0,1

]
,M2

1 =

[
m2

1,0

m2
0,1

]
, A1 =

[
a b
d e

]
,M1

1 = A1M
2
1

(6)

Similarly, we can derive the following relationship for
the second-order moments:

M1
2 =

m1
2,0

m1
1,1

m1
0,2

 ,M2
2 =

m2
2,0

m2
1,1

m2
0,2

 , A2 =

a2 2ad d2

ab ae+ bd de
b2 2be e2



M1
2 = A2M

2
2 (7)

The relationship of the first-order and second-order
Fourier moments, given in eq. (6) and (7), respectively, can
be used for the least squares estimation [37] of the above
four 2D affine parameters

E(A) =

2∑
d=1

wd‖M (1)
d −AdM (2)

d ‖
2 (8)

where d is the degree of moment, and wd is the weight as-
sociated with the Fourier moment constraint for the d-th de-
gree. From eq. (8), we can estimate the four affine param-
eters (a,b,d,e). According to eq. (3), we add the translation
term into eq. (8) to estimate the translation vector t as fol-
lows:

E(A, t) =

2∑
d=1

wd‖M (1)
d −AdM

(2)
d ‖

2 + ‖f2(A, t)− f1‖2 (9)

Although the above image registration algorithm was de-
rived for registering grayscale images, it can be easily ex-
tended for registering color images. For color images, the
FMM can be applied to each color (L, a, b) channel to obtain
the cost function, eq. (9), for each channel from the corre-
sponding Fourier moments. Thus, the geometric transform
between two color images can be estimated by minimizing
the total cost function Eg(A, t), which is the sum of the
three cost functions (EL, Ea and Eb) for channel L, a and
b, respectively, with the same geometric transform, given as
follows:

Eg(A, t) = EL(A, t) + Ea(A, t) + Eb(A, t) (10)



3.3. 3D FMM in photometric registration

Images may be taken at different time, with different sen-
sors, or with different camera settings, and so on. In this
situation, images taken at similar views may have very dif-
ferent color distributions. We use the affine transform to
model the variation of color distributions. The Lab color
histogram of an input image, denoted by a 3D array h, can
be used to represent the image color distribution. The affine
Lab color mapping can be considered as a typical 3D affine
image registration problem, which can be solved by the 3D
FMM described in section 3.1. Fig. 1 depicts an exam-
ple of image registration between two color images cap-
tured under different photometric settings. The 3-channel
Lab image is transformed into the 3D color histogram im-
age h and the color mapping problem is transformed into
a 3D geometric registration problem, which can be solved
by the FMM algorithm [22]. Let the Fourier spectrums of
the 3D histogram functions h1(x, y, z) and h2(x, y, z) be
denoted by H1(u, v, w) and H2(u, v, w), respectively. If
h1(x, y, z) and h2(x, y, z) are related by an affine transfor-
mation, i.e. h1(x) = h2(Cx + p), then their Fourier spec-
trums are also related by the corresponding affine transform,
i.e. |H1(u, v, w)| = |H2(u

′
, v

′
, w

′
)|/4 with the associated

affine relationship between (u, v, w) and (u
′
, v

′
, w

′
) given

in eq. (2). Let the affine matrix C and translation vector p
be denoted by

C =

a b c
e f g
i j k

 ,p =

dh
l

 (11)

To determine these affine parameters, we employ the
moment matching technique to the Fourier spectrums
|H1(u, v, w)| and |H2(u, v, w)|. The (α+β+γ)-th moment
for the Fourier spectrum |Fn(u, v, w)| is defined as

mk
α,β,γ =

∫ ∫ ∫
uαvβwγ |Fk(u, v, w)|dudvdw (12)

With coordinate substitution, we can derive the following
relationship for the first-order moments.

N1
1 =

m1
1,0,0

m1
0,1,0

m1
0,0,1

 , N2
1 =

m2
1,0,0

m2
0,1,0

m2
0,0,1

 , C1 =

a e i
b f j
c g k


N1

1 = C1N
2
1 (13)

Similarly, we can derive the following relationship for
the second-order moments.

C2 =


a1 e2 i2 2ae 2ai 2ei
b1 f2 j2 2bf 2bj 2fj
c1 g2 k2 2cg 2ck 2gk
ab ef ij af + be aj + bi ej + fi
ac eg ik ag + ce ak + ci ek + gi
bc fg jk bg + cf bk + cj fk + gj



N1
2 =


m1

2,0,0

m1
0,2,0

m1
0,0,2

m1
1,1,0

m1
1,0,1

m1
0,1,1

 , N
2
2 =


m2

2,0,0

m2
0,2,0

m2
0,0,2

m2
1,1,0

m2
1,0,1

m2
0,1,1

 , N
1
2 = C2N

2
2 (14)

The 3D affine matrix C and translation vector p can be
estimated by minimizing the cost functionEp(C,p) associ-
ated with the constraints in eq. (13), (14) and (3), given as
follows:

Ep(C, p) =

2∑
d=1

wd‖N (1)
d −CdN

(2)
d ‖

2+‖h2(C,p)−h1‖2 (15)

3.4. Integration of photometric and geometric reg-
istration

In order to register the images captured under different
lighting conditions, we combine energy functions associ-
ated with the photometric parameter estimation in eq. (15)
and geometric parameter estimation in eq. (10) as follows:

E(A, t, C,p) = Eg(A, t) + Ep(C,p) (16)

Note that the energy function can be minimized alterna-
tivly to obtain estimation for the affine geometric and pho-
tometric parameters between two images. In our implemen-
tation, we follow the order C, p, A, t to alternatively min-
imize the energy function. Satisfactory registration results
can be obtained when the relationship between the two im-
ages can be well modeled by affine transformations in both
the photometric and geometric spaces.

4. Local affine transformation
The above FMM approach is restricted by the geomet-

ric and photometric affine transform assumptions between
the images for registration. Sometimes, the two images for
registration may be taken at different time, from different
viewpoints, under different lighting conditions, or with dif-
ferent camera settings, and affine transforms may not be sat-
isfactory for modeling their relationship. In fact, the global
affine model is limited for application to real images. In this
section, we propose to extend the above FMM approach to
estimate the non-rigid geometric and photometric transfor-
mations between two images by estimating the local affine
transform for each block in the image. The local affine
transforms for the photometric and geometric registration
are estimated by minimizing the local FMM constraints for
the image and color histogram spaces as well as the spatial
smoothness constraints for the affine parameters.



Figure 2. (a) Reference (left) and target (right) images, (b) edge
maps of (a), (c) patch matching and sliding window, (d) left: target
center voting in edge maps, right: image cropping with the same
center.

The proposed local affine registration algorithm consists
of two steps. The first step is to find a rough translation
between two images in order to provide a good initial trans-
formation for the subsequent refinement step. The second
step is to estimate the local affine transformations by mini-
mizing the associated energy function.

4.1. Initial global affine estimation
In order to overcome the limitation of affine transform

between two images in the above photometric and geomet-
ric registration, we propose to first partition the edge map
of reference image, as depicted in Fig. 2(a) and (b), and
apply the above 2D geometric registration for each of the
partitioned block to the edge map of target image in Fig.
2(c). The average edge amplitude for each block is used to
check if the content in this block is rich enough for deter-
mining the alignment. The yellow cross in Fig. 2(c) means
that the average edge amplitude is too small to be used for
alignment. If a block is used, the above geometric registra-
tion is applied to estimate the affine transform from a sliding
window in the target image in Fig. 2(c). The cross power
spectrum cps(x) of a block q(x) and target image r(x) from
a sliding window is defined as

cps(x) = IFT ((Q
′
(u)R∗(u))/(|Q

′
(u)R∗(u)|))

mv = max real(cps(x)), t = argmax
x

real(cps(x)) (17)

where Q
′
(u) is the Fourier spectrum of q

′
(x) which is

transformed by q
′
(x) = q(Ax). R∗(u) is the conjugate

Fourier spectrum of r(x), IFT means the inverse Fourier
transform, real means the real part of the complex num-
ber in the Fourier domain, mv is the max value of cps(x)
and t is the location of the max value mv in the cps(x). In
the cross power spectrum theory [12], t measures the dis-
placement of r(x) and q(x) and mv means the similarity of
r(x) and q(x). If the mv value is large, the estimation t is
accurate.

According to the valuemv, a similarity measure fm can
be defined as follows:

fm =
max real(IFT ((Q

′
(u)R∗(u))/|Q

′
(u)R∗(u)|))

max real(IFT ((R(u)R∗(u))/|R(u)R∗(u)|)) (18)

We compute the score fm for each block and a fixed
threshold is used to determine if it is a match for the vot-
ing in each block. After the alignment for all the blocks in
the sliding windows, the locations of the reference point are
determined from the voting map for the target image com-
puted from the alignment of the partitioned blocks in the tar-
get image. Fig 2 (d) depicts an example of the voting map.
The aligned locations of all valid sub-blocks are included
into the voting on the target image for all matched sliding
windows to produce the voting map, which indicates the
possibility of a reference point appearing at each location
in the target image. The larger value at a location in voting
map indicates the higher possibility of a reference point lo-
cated at this location. Finally, according to the location, we
can crop the reference point and target image into the same
region and apply the photometric and geometric registration
on the same region both in the reference and target image to
determine the initial global affine parameters for the second
step.

4.2. Overlapping local affine registration
After the initial affine transform is estimated from the

first step, we partition the image uniformly into M-by-N
blocks with 50% overlapping as depicted in Fig. 4 and es-
timate the corresponding local affine transforms for each
block to achieve non-rigid image registration. We combine
the local Fourier moment constraints for each block in the
reference and target images and the spatial smoothness con-
straints for the affine transforms in the geometric and pho-
tometric space. For each block in the image, it is associated
with a geometric 2-by-2 affine matrix Ai,j , a 2D translation
vector ti,j , a photometric 3-by-3 affine matrix Ci,j , and a
3D translation vector pi,j . The whole parameter set of an
image are D = {Ai,jCi,j |i = 1, . . . , n; j = 1, . . . ,m} and
T = {tTi,jpTi,j}. Thus, the local affine estimation can be
extended from eq. (16) to minimize the following energy
function:

E(D,T ) = Edata(D,T ) + λEs(D,T ) (19)

where λ is the weight for the smoothness constraint, and the



Figure 3. (a) Initial global affine estimation and image partition-
ing. (b) Hierarchal block partitioning for coarse-to-fine local affine
estimation. (c) Image registration result.

data term Edata(D,T ) is defined as

Edata(D,T ) =

n∑
i=1

m∑
j=1

[Eg(Ai,j , ti,j) + Ep(Ci,j , pi,j)

+ αEe(Ai,j , ti,j)]e
−(β1(1−Sgi,j)+β2(1−Sci,j))ln(1+(n−1)/β3)

(20)

whereEe(Ai,j , ti,j) is the Fourier moment cost function for
the (i, j)-th block in the corresponding edge image, α is
the weighting factor for the edge constraint, and Sgi,j and
Sci,j are the fm value estimated by eq. (18) showing sim-
ilarity of the corresponding local affine blocks. Sgi,j is the
geometric similarity measure and Sci,j is the photometric
similarity measure. Note that n is the hierarchal block par-
tition level. β3 is larger than 1. if n equals to 1, there is no
weighting for all local affine blocks. When n is larger than
1, the weighting in each local affine blocks is more impor-
tant. There is the same importance in the traditional local
affine blocks, but there may be no corresponding blocks in
different types of images when doing local affine. Hence
we add the similarity weighting in each local affine block at
different level n. This term can deal with photometric and
geometric registration with occlusion well. Ee(Ai,j , ti,j) is
quite important if a block contains more edge information,
and it can help the algorithm to increase the registration ac-
curacy.

The smoothness term Es(D,T ) is defined as

Es(D,T ) = Es1(D) + Es2(T )

Es1(D) =
∑

[‖Ai,j −Ai+1,j‖2F + ‖Ai,j −Ai−1,j‖2F

+‖Ai,j −Ai,j+1‖2F + ‖Ai,j −Ai,j−1‖2F
+‖Ci,j − Ci+1,j‖2F + ‖Ci,j − Ci−1,j‖2F
+‖Ci,j − Ci,j+1‖2F + ‖Ci,j − Ci,j−1‖2F ]

Es2(T ) =
∑

[‖ti,j − ti+1,j‖2F + ‖ti,j − ti−1,j‖2F

+‖ti,j − ti,j+1‖2F + ‖ti,j − ti,j−1‖2F
+‖pi,j − pi+1,j‖2F + ‖pi,j − pi−1,j‖2F
+‖pi,j − pi,j+1‖2F + ‖pi,j − pi,j−1‖2F ]

(21)

where ‖‖F is the Frobenius norm.

4.3. Hierarchical block partition for coarse-to-fine
local affine estimation

Local affine model is sensitive to the initial estimation of
the affine transforms. Hence we use the hierarchal block
partitioning model to define the local affine transforms,
which are solved by minimizing the energy function in eq.
(14). For layer 0, we obtain the global affine parameters
from the first step described in section 3.1 as the initial esti-
mation for layer 1. The local affine parameters in layer 1 can
be solved by minimizing eq. (14) and they are used as initial
transforms for layer 2. This coarse-to-fine estimation pro-
cess is repeated for several iterations until the desired block
partitioning is reached. Fig. 3 shows the hierarchical block
partitioning for coarse-to-fine local affine estimation. In our
implementation, we use five layers to solve the local affine
parameters. After the above process, the local affine param-
eters for each block are obtained. However, using the same
affine transform for all pixels in one block is not smooth
enough. In addition, there is a continuity problem for the
transform across the boundary of adjacent blocks. To over-
come this problem, we apply a 2D bilinear interpolation for
the local affine transform parameters to compute the affine
transform parameters for each pixel in the image, and then
we compute the transformed values, photometric and ge-
ometric ones, from the associated affine transforms for all
pixels to obtain the transformed image after the local affine
transformation. Fig. 4 depicts an example of image regis-
tration experiment comparing the proposed method, FMM
[22], and Ho et al. [11]. Note that the latter two meth-
ods correspond to the affine registration methods based on
the moment matching in the Fourier domain and spatial do-
main, respectively. The results of FMM and Ho et al. were
obtained by applying them to the edge maps in Fig. 4(b) and
4(d). The results show the proposed local affine registration
algorithm provides the best registration result.

4.4. Computational Speedup

In the hierarchal block partition, if the similarity for a
pair blocks is very high, we do not estimate its transfor-



Figure 4. An example of image registration results: (a) reference
image and (b) its edge map, (c) target image and (d) its edge map,
and registered results by (e) proposed method, (f) FMM [22], and
(g) Ho et al. [11]

mation in the next layer of parameter estimation and fix its
affine transformation in this layer. For the photometric reg-
istration, three layers are enough to describe color transfor-
mations. For geometric registration, we use 5 layers for the
hierarchical local affine model estimation. By using this
strategy of early termination, we can significantly reduce
the execution time.

5. Experimental Results
In our experiments, we test the proposed image registra-

tion algorithm and some state-of-the-art algorithms on two
image datasets. The first is the open dataset provided by
Shen et al.[21]. The dataset contains 4 image pairs with dif-
ferent exposures and 3 image pairs with and without flash.
The dataset also provides a set of human labeled corre-
sponding points as the ground truth in the 7 image pairs that
can be used for the quantitative evaluation of image registra-
tion accuracy. Figure 5 (a) and (b) shows an example of the
image pairs. The other dataset is our dataset that contains
42 real color image pairs. It can be categorized into three
clusters, 16 image pairs with large geometric transforma-
tions, 21 image pairs with large illumination variations and
5 image pairs with occlusion. We also select about 50 to 100
corresponding points in each pair of images for quantitative
evaluation of image registration accuracy.

Table 1. Average registration errors (unit: pixels) of different
methods on the dataset by Shen et al. [21]

Methods Flash/No-flash Diff. Exposure
SIFT Flow [16] 8.76 10.03

Hermosillo et al.[10] 16.57 13.24
Shen et al.[21](color+grad.) 4.56 2.25

Lin et al.[15] 6.42 4.75
Zaragoza et al.[26] 6.75 4.32

Zaragoza et al.+NRDC[25] 6.23 4.33
Proposed method 2.37 4.02

without block weighting
Proposed method 1.86 2.32

Figure 5. Some examples in the dataset from Shen et al. [21].
Images in the upper row are images of different exposures, images
in the lower row are the flash/no flash examples. (a) Reference
images, (b) target images, registered results by (c) the proposed
algorithm, (d) Lin et al. [15], and (e) Zeragoza et al.[26]

Figure 6. Some examples in our image dataset. (a) Reference
images, (b) target images, registered results by the proposed algo-
rithm (c) with and (d) without block weighting.

Table 2. Average registration errors (unit: pixels) of different
methods on our dataset.

Methods Large Lighting Occlusion
Motion Change

Lin et al.[15] 5.76 3.37 8.25
Zaragoza et al.[26] 4.68 3.51 5.87

Zaragoza et al.+NRDC[25] 5.23 3.26 6.17
Proposed method 5.27 3.02 6.98

without block weighting
Proposed method 3.51 1.62 3.12

We demonstrate the proposed hierarchical local affine
registration algorithm for estimating the geometric and pho-
tometric transforms for the image pairs in the two datasets
in Fig. 5 and Fig. 6. The first image registration ex-
periment is performed on the open dataset from Shen et
al. [21]. We use the image pairs with different exposure
and with/without flash in our experiments. We compared
with the experimental results in Shen et al. [21] and also
compared with Lin et al. [15], Zaragoza et al.[26] , and
Zaragoza et al. with color correction by using NRDC[25]
as a preprocessing step. Table 1 shows the average errors of
7 image pairs. Our proposed algorithm can be used to solve
such challenging image registeration problems. Especially
adding the block weighting term in our proposed algorithm
can significantly improve the registration accuracy. Some
of the results are depicted in Fig. 5. It is evident from Table



Figure 7. (a) Reference images, (b) target images, and registered results by (c) the proposed algorithm, (d) Lin et al. [15], and (e) Zeragoza
et al.[26].

1 that the proposed algorithm outperforms the other meth-
ods for the flash/no-flash category and its accuracy on the
different exposure category is comparable to the best result
by Shen et al. [21].

The second image registration experiment is performed
on our dataset of image pairs with three different categories;
namely, large motion, lighting change and occlusion . Table
2 summarizes the average registration errors of the 42 image
pairs under the three categories. In order to compare with
the state-of-the-art non-rigid registration methods, we apply
the methods by Lin et al. [15] and Zaragoza et al.[26] to the
image pairs in this dataset. These two methods are represen-
tative recent approaches for image registration using local
affine and feature point correspondences. It is obvious from
Table 2 that our algorithm that can deal with photometric
and geometric deformation simultaneously outperforms the
other two competing state-of-the-art methods. Some image
registration results from this dataset are depicted in Fig. 7.

In addition, we also compare the registration results of
the proposed algorithm with and without using the block
weighting in both datasets, and the results show the block
weighting significantly imrpoves the registration accuracy
for both datasets. Some examples of the registration results

are shown in Fig. 6.

6. Conclusion

In this paper, we proposed a novel hierarchical local
affine FMM-based algorithm for registering images with
deformable geometric and photometric variations. We ex-
tend the FMM from global affine transformation to an over-
lapping local affine model, and adding the edge term and
block weighting to improve the registration accuracy. We
also use the hierarchial estimation framework to speed up
the computational speed. Our experiments show the pro-
posed non-rigid image registration algorithm is very ro-
bust and accurate for registering pairs of images related
by large geometric and photometric transformations. We
demonstrate superior registration accuracy of the proposed
algorithm over the previous methods on two image datasets
through quantitative assessment.
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