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A scattering transform is a deep convolutional network computed with pre-
defined complex wavelet filters. It has been sucessfully applied to texture
classification [5] and digit recognition[1]. In this paper, we introduce a
separable scattering along translation and rotation group, for object clas-
sification in images. Applying a supervised SVM classifier with a feature
selection gives an accuracy similar to state-of-the-art unsupervised learning
algorithms, on Caltech and CIFAR image datasets.

Image classification requires to find sets of features which are discrimi-
native and do not suffer from the high variance resulting from the high image
dimensionality. We show that building stable invariants adapted to transla-
tion, rotation and image deformations leads to feature sets which perform as
well as unsupervised learning.

Scattering coefficients are computed with a cascade of wavelet trans-
forms, and modulus non-linearities. Wavelets separate the image informa-
tion along multiple scales and angles which provides a representation which
is stable to deformations. Translation invariance at a scale 2J is obtained
with an average pooling with a dilated Gaussian φJ(p) = 2−2Jφ(2−J p).

A scattering network computes the modulus of wavelet coefficients at
multiple scales. They are calculated with a complex 2D Morlet (nearly Ga-
bor) wavelet ψ , which is dilated by 2 j and rotated by 8 angles θ :

ψ j,θ (p) = 2−2 j
ψ(2− jr−θ p) .

A wavelet convolution at a scale 2 j can be implemented with a cascade of
j filtering and subsampling, so the scale index j corresponds to the network
depth. First order internal wavelet coefficients are calculated at all scales
0≤ j ≤ J:

x1
j(p,θ) = |x?ψ j,θ (p)|.

A separable roto-translation scattering computes second order internal
coefficients by filtering each x1

j(p,θ) along the spatial variable p and the
angular variale θ , with a 3D separable complex wavelet:

ψ j,β ,k(p,θ) = ψ j,β (p)ψk(θ) .

ψk(θ) = 2−kψ(2−kθ) is one-dimensional angular wavelet. Second order
internal wavelet coefficients recombine spatial and angular information with
a 3D convolution of x1

j1(p,θ) along (p,θ), for any 0≤ j1 < j:

x2
j = |x1

j1 ?ψ j,β ,k|.

The angular filtering provides a sensitivity to angular variations which im-
proves classification.

The last layer J of this scattering network outputs a spatial average pool-
ing at the scale 2J , of all internal coefficients, subsampled at spatial intervals
2J : {

x?φJ , x1
j ?φJ , x2

j ?φJ

}
1≤ j≤J

.

It includes a spatial averaging of the input image image x, of first order
wavelet modulus images x1

j , and of second order coefficients x2
j , at all scales

2 j ≤ 2J .
For an image of P = 2562 coefficients, at a scale 2J = 26, there is about

50 averaged coefficient x ? φJ . For a wavelet transform computed over 8
angles θ , there is nearly 2103 coefficients x1

j ?φJ , and about 90103 coeffi-
cients x2

j ?φJ . It is a rich set of locally invariant descriptors, providing joint
information across scales and angles.

We introduce a supervised classifier, which first performs a feature se-
lection with an orthogonal least square. Scattering coefficients are highly
correlated. The orthogonal least square is a supervised greedy algorithm,
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Dataset ScatNet Unsupervised Supervised
Caltech-101 79.9 82.5 91.4
Caltech-256 43.6 50.7 70.6
CIFAR-10 82.3 83.1 91.8
CIFAR-100 56.8 60.8 65.4

Table 1: Classification accuracy of a roto-translation scattering compared to
state of the art unsupervised and supervised feature learning.

which selects M ≈ 3103 features with labeled training data. It decorre-
lates the selected scattering features with a Gram-Schmidt orthogonaliza-
tion. This selection can be interpreted as a fully connected layer with M
nodes at the output. The final classification is performend with a Gaussian
kernel SVM on these M coefficients.

The resulting classification accuracy is evaluated on CIFAR and Cal-
Tech data bases. A scattering representation is a set of predefined features
calculated with wavelet filters. It yields much better accuracy results than
any existing algorithm using predefined features, such as SIFT type fea-
tures or random filters in deep networks, which are not optimized by learn-
ing. Table 1 compares this classification accuracy with unsupervised feature
learning, without data augmentation, and with supervised feature learning
algorithms. The best results are obtained with supervised feature learning,
using deep networks which are trained on ImageNet or by using data aug-
mentation technics.

Table 1 shows that predefined scattering features gives a classification
accuracy of the same order as state of the art unsupervised feature learning.
The same scattering classifier is used for the four data bases whereas results
from different unsupervised learning algorithms relatively to each data basis
are given in the table 1. No single unsupervised learning algorithm performs
better than a scattering on all data bases. Supervised deepnetwork with data
augmentation lead to the state-of-the-arts results on those four datasets [3].

A scattering transform is computed with convolutions along groups of
transformations, which are responsible for important image variabilities.
This paper concentrates on translations and rotations, but it can similarly
be extended to any other group. Improving results requires to consider other
source of variabilities and invariants, for example across color channels or
across scales, which are not recombined in this architecture. The hard part
is to identify the important group of variability for improving classification.
It seems that supervised deep network classifiers are able to identify them.
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