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Abstract

Shape-from-Template (SfT) is the problem of inferring

the shape of a deformable object as observed in an image

using a shape template. We call 2DSfT the ‘usual’ instance

of SfT where the shape is a surface embedded in 3D and

the image a 2D projection. We introduce 1DSfT, a novel

instance of SfT where the shape is a curve embedded in

2D and the image a 1D projection. We focus on isomet-

ric deformations, for which 2DSfT is a well-posed prob-

lem, and admits an analytical local solution which may be

used to initialize nonconvex refinement. Through a complete

theoretical study of 1DSfT with perspective projection, we

show that it is related to 2DSfT, but may have very different

properties: (i) 1DSfT cannot be exactly solved locally and

(ii) 1DSfT cannot be solved uniquely, as it has a discrete

amount of at least two solutions. We then propose two con-

vex initialization algorithms, a local analytical one based

on infinitesimal planarity and a global one based on inex-

tensibility. We show how nonconvex refinement can be im-

plemented where, contrarily to current 2DSfT methods, one

may enforce isometry exactly using a novel angle-based pa-

rameterization. Finally, our method is tested with simulated

and real data.

1. Introduction

The 1886 novella Flatland [4] describes a 2D world

where inhabitants are portrayed by polygons. In Flatland,

the social status of a person is determined by its polygon’s

regularity and number of sides. At the time Flatland was

created, a very refined skill was the “Art of Sight Recog-

nition”. It was practiced by the highest classes to recog-

nize the social class of others. Colors were forbidden since

lower classes could have used them to impersonate noble

Polygons. We think that the situation in Flatland has now

evolved. Social differences fadded away, as the ancient “Art

of Sight Recognition” has been popularized via the use of

color and perspective perception. However, the following

question has been left unanswered: can a Flatlander recover

a curve from its 1D projection matched to a 1D template?

We name this problem 1D Shape-from-Template (SfT), as

it resembles a problem known as SfT in Mankind’s liter-

ature, which we here dub 2DSfT for the sake of clarity.

2DSfT involves a 2D image of a 2D surface embedded in

3D, and whose shape is to be reconstructed. The problem

involves data constraints provided by the image and a prior

on the surface’s deformation. The most studied deforma-

tion prior is isometry [6, 14, 8], but other models such as

conformity [6] and linear elasticity [12] were also studied.

Isometric deformations work well for some thin materials

such as cloth and paper. Importantly, isometric 2DSfT is a

well-posed problem [6].

We introduce 1DSfT and focus on the isometric defor-

mation prior. For 1DSfT this means that the length between

any two points of the curve to be reconstructed has been

preserved by the deformation. We assume that the 1D tem-

plate was matched to the 1D image, and that this is con-

veyed by a smooth 1D warp function, or just warp. This is

the analogous of the 2D keypoint matches or 2D warp used

in 2DSfT [5]. Whether in 1D or 2D, the isometric deforma-

tion is not a convex constraint. Existing 2DSfT methods fall

in three categories: (i) local analytical solutions, (ii) convex

relaxations and (iii) nonconvex refinements. An initial so-

lution obtained by a method in (i) or (ii) is usually used to

initialize a method in (iii). In (i) the depth and surface’s

normal are inferred, independently for each surface point,

from the warp and its first-order derivatives. In (ii) isom-

etry is relaxed to inextensibility, which is an upper bound

on the local surface’s extension, and is a convex constraint.

In (iii) a given solution is refined iteratively by minimizing

a weighted combination of the reprojection error and the

deformation’s un-isometricity. At first sight, it seems that

1DSfT can be directly solved by the literature’s results in

2DSfT. It may even look like 1DSfT is an easier problem

for one dimension was dropped compared to 2DSfT. While

this is true in some respects, this is not in others, as a deeper

investigation of the problem reveals. Making a long story

short, category (i) breaks down in 1DSfT, category (ii) is

applicable about similarly, and category (iii) may be imple-



mented in a better way than in 2DSfT. Maybe more impor-

tantly, 1DSfT is not well-posed, as it admits M solutions,

with 1 < M <∞.

We first give a differential model of 1DSfT, from which

we first establish the non-local solvability of 1DSfT. Lo-

cal solvability was established at first-order in 2DSfT; we

show that non-local solvability holds at any order in 1DSfT.

In other words, differenting the 1DSfT equations does not

allow one to overcome the growing number of local un-

knowns. Our analysis also reveals the presence of what

we call critical points. At these points, the curve’s nor-

mal is colinear with the line of sight, and depth can then

be solved locally. Importantly, the number of solutions M

can be shown to be M ≤ 2N+1, with N the number of

critical points. We then propose two approximate initial-

ization algorithms. First, even if 1DSfT is not locally solv-

able exactly, we show how a locally affine approximation of

the curve facilitates local solvability. This leads to a local

approximate algorithm, opening an unexplored subcategory

in (i). Second, we show how the inextensibility relaxation

used with the Maximum Depth Heuristic, which character-

izes category (ii), may be directly used. We show how to

find the critical points from the warp and to infer the M

possible solutions. This involves a nonconvex refinement

process, forming an algorithm of category (iii). We show

that isometry may be enforced exactly by using an angle-

based shape parameterization. This simple parameteriza-

tion may inspire new research in 2DSfT, where isometry has

so far been enforced approximately using a simple penalty

in the cost function [7]. This is important, as this solves the

problem of choosing the weight combining data and prior in

2DSfT. Finally, we show results on simulated and real data.

Notation. We use Greek letters for functions (e.g. ϕ),

bold for vectors (e.g. Q) and hats for estimates (e.g. Q̂). The

first and second derivatives of a function are written with

primes (e.g. ϕ′
y and ϕ′′

y ). The vector two-norm is denoted

‖.‖2. Homogeneous coordinates are written with a bar, for

instance η̄ =
(

η 1
)⊤

.

2. State of the Art

SfT has been extensively studied for a broad variety

of deformation constraints that we can divide in statistics-

based and physics-based methods. Statistics-based meth-

ods [10, 14, 9] learn the space of deformations from data.

These models are specially effective in low-dimensional

spaces of deformations, for instance face gestures. On

the contrary, physics-based methods [6, 14, 12] allow

an infinite-dimensional space of deformations while using

mathematical models inspired in physical laws. The iso-

metric model belongs to this category but other deformation

models have been studied such as the conformal [6] model

or the slinear elastic model [12]. The isometric model has

attracted most of the attention [6, 14, 13]. Isometry is an ac-

curate model for many real object deformations but, more

importantly, it makes 2DSfT a well-posed problem [6].

Despite their simplicity, isometric constraints are non-

convex and may lead to complex computational solutions.

Methods in category (i) solve locally a system of non-linear

PDEs [6, 8]. They are very fast but they do not ensure isom-

etry in the presence of noise. Methods in (ii) relax the non-

convex isometric constraints using the so-called Maximum

Depth Heuristic (MDH) [13]. The idea is to maximize the

surface depth so that the Euclidean distance between every

pair of points is upper bounded by its known geodesic dis-

tance. They are accurate but fail if the perspective is not

strong. Finally, methods in (iii) optimize a statistically op-

timal cost but require iterative non-convex optimization [7].

They need an accurate initialization, usually provided by

methods from either (i) or (ii).

To sum up, existing methods for isometric 2DSfT solve

a well-posed problem, which locally involves 3 constraints

and 3 unknowns [6]. 1DSfT turns out to be more difficult

in some respects since the number of local isometric con-

straints drops from 3 to 1 while the number of unknowns

drops only from 3 to 2.

3. Modeling
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Figure 1. General modeling of 1DSfT, the problem of monocular

template-based 2D reconstruction of a deformed curve.

Our modeling is shown in figure 1. It is inspired from [6],

where 2DSfT was proposed for 2D images and surfaces em-

bedded in 3D. In 1DSfT, the known template is 1D and we

write it as T ⊂ R. The template is deformed into a smooth

curve S ⊂ R
2 embedded in 2D which is unknown. We

denote as ϕ = (ϕx ϕy)
⊤

∈ C∞(T ,R2) the embedding

that parametrizes S from the template. The 1D input image

I ⊂ R is modeled as the perspective projection of S that we



denote with a canonical 1D projection function Π:

Π(Q) =
x

y
where Q = (x y)

⊤
, (1)

We assume that the image coordinates are normalized by

undoing the known camera’s intrinsics (the focal length and

principal shift). We define η ∈ C∞(T ,R) as the registra-

tion warp between the template and the image. We assume

that S has no self-occlusions in I.

The goal of 1DSfT is to recover the embedding ϕ, from

the warp η and the projection function Π and the fact that

the curve S deforms isometrically. The reprojection con-

straint links the warp and the embedding through camera

projection:

η = Π ◦ ϕ (2)

The isometry constraint forces the geodesic distance to be

preserved between T and S . Isometry is a first order differ-

ential property in ϕ:

‖ϕ′‖
2
2 = 1. (3)

From the constraints (3) and (2) we define 1DSfT as finding

the solution to:

Find ϕ ∈ C∞(T ,R2) s.t.

{

η = Π ◦ ϕ (reprojection)

‖ϕ′‖
2
2 = 1 (isometry).

(4)

4. Differential Analysis

4.1. ODE Formulation

We show that the 1DSfT problem (4) is equivalent to

finding the solution of a first order non-linear ODE. We first

transform the reprojection constraint (2) into:

ϕyη = ϕx, (5)

which we differentiate one time, giving:

η′ϕy + ηϕ′
y = ϕ′

x. (6)

By substituting ϕ′
x from equation (6) in the isometry con-

straint (3) and expanding, we arrive at:

(

ϕ′
yη

)2
+ 2ϕyϕ

′
yηη

′ + (ϕyη
′)
2
+
(

ϕ′
y

)2
= 1. (7)

Equation (7) is a first-order non-linear ODE with ϕy as de-

pendent variable. Given a solution to equation (7) the em-

bedding ϕ is expressed as ϕ = ϕ′
y η̄.

We use equation (7) to study 1DSfT, local stability and

solution space. This leads to two important results: i)

1DSfT is not locally solvable exactly and ii) 1DSfT has a

discrete number of solutions.

4.2. Local Exact Solutions

We explore whether local solutions of equation (7) ex-

ist by assuming that ϕy and ϕ′
y are independent variables.

These are called the non-holonomic solutions [11]. Our

main motivation is historical as non-holonomic solutions

were first proposed in [6] for the 2DSfT problem, provid-

ing a proof of well-posedness and analytic solutions. Non-

holonomic solutions are based on a relaxation of the differ-

ential dependencies and creating new equations by differen-

tiation.

We prove the following proposition regarding the exis-

tence of non-holonomic solutions to equation (7):

Proposition 1. The non-holonomic solution for depth ϕy in

equation (7) is under-constrained at all orders of differenti-

ation.

Proof. Equation (7) gives a single constraint for the two un-

knowns, ϕy and ϕ′
y . By differentiating equation (7) we can

create extra equations. Differentiating k − 1 times we ob-

tain a total of k equations. However, with each differentia-

tion we introduce a new unknown. For order k we have a

total of k + 1 unknowns (i.e. ϕy, ϕ
′
y, . . . , ϕ

(k)). As a con-

sequence we have k equations and k + 1 unknowns and the

problem is under-constrained for any orders k > 0.

4.3. Solution Space

We now study the global solutions to 1DSfT. We first

transform equation (7) using a change of variable that al-

lows us to define the so-called critical points, where the

normal of the embedding is collinear with sightline. Criti-

cal points are shared by groups of solutions of equation (4),

constraining them to tangentially intersect in 2D. We show

that the number of critical points allows us to give an upper

bound on the number of solutions.

4.3.1 Change of Variable

We first define ε = ‖η̄‖ and thus, ε′ = 1
ε
ηη′. Introducing ε

and ε′ in equation (7) we have:

(

ϕ′
yε+ ϕyε

′
)2

− ϕ2
yε

′2 + ϕ2
yη

′2 = 1. (8)

We then define the change of variable:

θ = ϕyε, (9)

which allows us to transform equation (8) into one depend-

ing on θ and θ′:

θ′2 + ξθ2 = 1 with ξ =
η′2

ε4
. (10)

Finally we obtain θ′ from equation (10) as:

θ′ = ±
√

1− ξθ2. (11)



Given a solution to equation (11) we recover a solution of

the original ODE (7) by simply inverting the change of vari-

able of equation (9).

4.3.2 Critical Points

We now give the definition of critical points and their prop-

erties that allow us to study the space of solutions of 1DSfT.

Definition 1. Given θϕ a solution of equation (11), uc ∈
T is a critical point of θϕ if θ′ϕ(uc) = 0 or alternatively

θ2ϕ(uc)ξ(uc) = 1.

Let us define the normal field of an embedding ϕ with

the operator µ[ϕ] where:

µ[ϕ] =
(

−ϕ′
y ϕ′

x

)⊤
. (12)

Note that µ[ϕ](u), with u ∈ T , is a unit vector when ϕ is

isometric.

Proposition 2. Given a solution ϕ to equation (4), uc ∈ T

is a critical point if and only if µ[ϕ](uc)
⊤

ϕ(uc)

‖ϕ(uc)‖2
= ±1.

Proof. We start by writing η′ in function of ϕ from equa-

tion (2):

η′ =
ϕ′
xϕy − ϕxϕ

′
y

(ϕy)2
. (13)

We use equation (13) in equation (10) and equation (9) to

express ξ and θ:

ξ =

(

ϕ′
xϕy − ϕxϕ

′
y

)2

(

ϕ2
x + ϕ2

y

)2 (14)

θ =
√

ϕ2
x + ϕ2

y. (15)

From definition 1 we have that if uc is a critical point then:

θ2(uc)ξ(uc) = 1, (16)

where, by using Eqs. (14), (15) and (12) we have that:

θ2(uc)ξ(uc) =

(

ϕ′
x(uc)ϕy(uc)− ϕx(uc)ϕ

′
y(uc)

)2

ϕ2
x(uc) + ϕ2

y(uc)

=

(

µ[ϕ](uc)
⊤ ϕ(uc)

‖ϕ(uc)‖2

)2

. (17)

Proposition 2 gives a geometric interpretation of the crit-

ical points: they represent the points of the curve S where

the normal and the optical ray are collinear.

Proposition 3. Given ϕ and γ two solutions of equation (4)

where uc ∈ T is a critical point of both ϕ and γ then we

have ϕ(uc) = ±γ(uc).

Proof. If ϕ and γ are two solutions of equation (4) they

both respect the reprojection constraint Π◦ϕ = Π◦γ. This

property is equivalent to:

∃ρ ∈ C∞(R,R) s.t. ϕ = ργ. (18)

We define θϕ = ǫϕy and θγ = ǫγy which are solutions of

equation (11). From equation (18) we have that θϕ = ρθγ .

Now if uc is a critical point we have from definition 1 that

θ′ϕ = 0 and θ′γ = 0 and thus:

θ2ϕξ = ρ2θ2γξ = 1 and θ2γξ = 1. (19)

From equation (19) we have that ρ2 = 1 and thus ϕ =
±γ.

Proposition 4. Given two solutionsϕ and γ to equation (4),

if uc ∈ T is a critical point of ϕ and not of γ then

‖γ(uc)‖
2 ≤ ‖ϕ(uc)‖

2.

Proof. Differentiating equation (18) we have that:

ϕ′
x = ρ′γx + ργ′x ϕ′

y = ρ′γy + ργ′y. (20)

From the result of proposition 2 we have that if uc is a crit-

ical point of ϕ then:

(

ϕ′
x(uc)ϕy(uc)− ϕx(uc)ϕ

′
y(uc)

)2

ϕ2
x(uc) + ϕ2

y(uc)
= 1. (21)

We substitute ϕ in equation (21) using equation (18) and

equation (20) to obtain an equation with ρ(uc) and γ(uc):

ρ2(uc)

(

γ′x(uc)γy(uc)− γx(uc)γ
′
y(uc)

γ2x(uc) + γ2y(uc)

)2

= 1, (22)

which can be expressed from equation (17) as follows:

ρ2(uc)

(

µ[γ](uc)
⊤ γ(uc)

‖γ(uc)‖2

)2

= 1. (23)

From equation (23) we have that ρ2(uc) ≥ 1, as ρ2(uc) is

multiplied by the squared dot product of two unit vectors,

which is always ≤ 1. Thanks to equation (18), we have

‖γ(uc)‖
2 ≤ ‖ϕ(uc)‖

2.

In proposition 3 we show that all solutions sharing a crit-

ical point are constrained to intersect in 2D. However in

proposition 4 we show that all critical points are not nec-

essary shared by all solutions. In fact, critical points of a

solution do not propagate to solutions that are closer to the

retina. We show next a way to characterize all critical points

of equation (4) for all solutions.



Proposition 5. A point uc ∈ T is a critical point of equa-
tion (4) if it is a solution of the equation:

2η(uc)η
′2(uc)−

(

1 + η
2(uc)

)

η
′′(uc) = 0

Proof. We derive a condition on η that is valid at critical

points. We first differentiate equation (10) to get the fol-

lowing ODE:

2θ′θ′′ + ξ′θ2 + 2ξθθ′ = 0. (24)

We assume ϕ is a solution to equation (4) with uc ∈ T a

critical point. We have that θϕ = ǫϕy is a solution to equa-

tion (24) and θ′ϕ(uc) = 0 from definition 1. We substitute

θϕ in equation (24) and evaluate the result at uc, obtaining

the following condition:

ξ′(uc)θ
2
ϕ(uc) = 0. (25)

As θϕ(uc)
2 6= 0, otherwise ϕ passes through the camera’s

origin at uc, we have that ξ′(uc) = 0, where:

ξ′ =
2ε4η′η′′ − 4ε3ε′η′2

ε8
, (26)

from which we have that ξ′(uc) = 0 is equivalent to:

ε3

η′
(ε(uc)η

′′(uc)− 2ε′(uc)η
′(uc)) = 0. (27)

By substitution of ǫ and ǫ′ in terms of η and removing fac-

tors in equation (27) we have the following condition:

2η(uc)η
′2(uc)− (1 + η2(uc))η

′′(uc) = 0, (28)

which only depends on η and its derivatives.

Proposition 5 is important as it gives an equation for find-

ing all critical points from the known η, without requiring

to compute all solutions of equation (4). As we explain be-

low, the number of critical points gives us a bound for the

maximum number of solutions of equation (4).

4.3.3 Bounding the Number of Solutions

We use the properties of critical points given in the previous

section and the Picard-Lindelöf (PL) theorem to give an up-

per bound on the number of solutions to 1DSfT (4). The PL

theorem provides conditions for the existence and unique-

ness of solutions in first-order ODEs with initial conditions.

We reproduce its definition as: Consider the following ini-

tial value problem in a general ODE with θ as dependent

variable and u as independent variable,

{

θ′ = ψ (θ, u)

θ(u0) = θ0.
(29)

If ψ is a Lipschitz continous function in θ and continous

in u for all u ∈ [u0 − ǫ;u0 + ǫ] with ǫ > 0 then there

exists a unique solution to equation (29) in the interval

[u0 − ǫ;u0 + ǫ].
To apply the PL theorem in equation (11) we study an

open interval between two consecutive critical points uc1
and uc2 where the sign of θ′ does not change.

Proposition 6. Given two consecutive critical points uc1
and uc2 and given a solution θϕ of equation (11), the sign

of θ′ϕ remains constant in the interval I = (uc1 ;uc2).

Proof. We assume that θϕ has continuous derivatives and

θ′ϕ(uc1) = 0 and θ′ϕ(uc2) = 0 by definition 1. Therefore the

function θ′ϕ cannot change its sign in the interval I without

passing through a critical point which contradicts the fact

that there are no critical points in I .

Using proposition 6 we give the following result:

Proposition 7. Given the open interval I = (uc1 ;uc2) be-

tween two consecutive critical points, there exist a maxi-

mum of 4 solutions of equation (11) in I .

Proof. We assume a point u0 ∈ I and a solution θ+ of (11)

where θ+(u0) > 0 and θ′+(u0) > 0. From proposition 6,

θ′+ does not change sign in I and thus it is a solution of (11)

taking positive sign in the square root:

θ′ =
√

1− ξθ2. (30)

We take partial derivatives of equation (30) to show that it

is Lipschitz continous in I:

∂ψ

∂θ
=

−ξθ
√

1− ξθ2
. (31)

As I is a finite interval and the denominator of equation (31)

is never zero in I then ψ′ is bounded and ψ is Lipschitz

continous. We define ǫ > 0 such that the interval Iu0
=

[u0−ǫ;u0+ǫ] is contained in I . Note that Iu0
always exists

by making ǫ small enough. As a consequence, from the LP

theorem we can conclude that the solution θ+ is unique in

the interval Iu0
. By repeating the same process for all points

u0 ∈ I we demonstrate that the solution θ+ is unique in I .

We repeat the same argument for a solution θ− where

θ−(u0) > 0 and θ′−(u0) < 0. In this case the ODE is

given by θ′ = −
√

1− ξθ2. By using the PL theorem we

show that indeed if θ− exists it is unique in the interval I .

We conclude the proof by highlighting that we count also as

solutions the mirrored versions of θ+ and θ− which gives a

total of 4 possible solutions in the interval I .

Note that from now on only positive, i.e. real, solutions

are considered. From proposition 7 we can derive the fol-

lowing bound on the number of solutions, given the number

of critical points.



Corollary 1. For N critical points in T , there are M ≤
2N − 1 possible solutions to equation (4).

Proof. Considering proposition 7, between two successive

critical points there are 2 possible solutions. From proposi-

tion 3 we know that solutions intersect in the critical points.

Therefore, the solutions to (4) are composed of chunks that

connect at the critical points. For N critical points we have

M ≤ 2N − 1 possible combinations.

5. Computational Solutions

Our approach is based on the fact that one solution is

needed to find the critical points and to compute the second

solution. Our 1DSfT method is composed of 4 main steps,

shown in figure 2:

1. Initialization: in this step we propose two strategies

to find an initial solution. The first strategy is to as-

sume that the sought after solution of equation (4) is

infinitesimally planar. We then can use equation (33)

to give a solution. The second strategy is based on the

Maximum Depth Heuristic (MDH) which yields to a

convex SOCP.

2. Refinement: we use an isometric parametrization of

the solution and non-linear local optimization to refine

the solution given by the previous step. This step re-

quires an accurate initialization given in the previous

step.

3. Critical points: we use the properties of critical points

to find them in the solution given by refinement. The

template T is then divided in intervals given by con-

secutive critical points where there is a maximum of 4
solutions.

4. Finding all solutions: we use refinement to find all

solutions on each interval by forcing all different com-

binations of signs for θ and θ′.

5.1. Initialization

5.1.1 Non-Holonomic Analytic Solution under In-

finitesimal Planarity

One way to initialize the refinement is provided by an ana-

lytical solution. We show that a special case of the 1DSfT

problem can be solved locally and analytically. In this spe-

cial case we assume the deformed curve S to be infinites-

imally planar. This is equivalent to consider S as a suc-

cession of infinitesimal lines, i.e. to consider that for every

u ∈ T , ϕ′′(u) = 0. Using the result from proposition 1

we have that by differentiation of equation (7) we find the

following system with 2 unknowns and 2 equations.
(

ϕ′
yε+ ϕyε

′
)2

− ϕ′2
y ε

′2 + ϕ2
yη

′2 = 1

2(ϕ′
y)

2ηη′ + ϕyϕ
′
y

(

2(η′)2 + ηη′′
)

+ ϕ2
yη

′η′′. (32)
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Figure 2. Proposed 1DSfT method.

By removing ϕ′
y from the two equations in equation (32)

we have two solutions for ϕy:

ϕy = ±
2η′

√

(−η′′η + 2(η′)2)
2
+ (−η′′)

2
. (33)

The infinitesimal assumption can be generalized for higher

orders assuming that for u ∈ T , ϕ(k)(u) = 0. This makes

ϕ locally a polynomial of finite order. However, unlike in-

finitesimal planarity, for k > 2 analytical solutions cannot

be found and the solution requires to solve a system of poly-

nomials. We keep the positive solution. The first and second

derivatives of the warp are computed thanks to a polynomial

approximation.

5.1.2 Maximum Depth Heuristic

This isometry constraint relaxation [13] is based on three

strong points. It is a second-order cone program (SOCP)

optimization. This method moves the 2D points Q̂i along

each sightline, what preserves the reprojection constraint.

It maximizes the distance between the 2D points such that



they are lower or equal to the geodesic distance between the

equivalent 1D points ui in T :

∥

∥

∥
Q̂i − Q̂j

∥

∥

∥

2
≤ |ui − uj | . (34)

5.2. Isometric Parametrization and Refinement

One contribution of this work is the isometric

parametrization of the embedding function. Such a

parametrization is difficult to achieve for 3D objects. 1DSfT

allows us to try it in a simpler setting. We assume that

the template T is composed by m ticks with a distance

l between two successive points. Instead of constraining

isometry during the refinement, the embedding function is

made isometric by construction, using an angle function

α : T → R:

∀ui ∈ T , ϕ(ui) = l

i
∑

j=1

(

cosα(uj)
sinα(uj)

)

+

(

tx
ty

)

, (35)

with α(uj) =
∑n

k=0 u
k
j ck, a n-degree polynomial. Thus,

the embedding function is defined by n + 3 parameters:

shape and translation parameters, {ci}i∈[0;n] ,tx and ty .

The refinement is performed by a nonlinear least-squares

optimization on a cost function containing only the repro-

jection constraint.

εd(c0, ..., cn, tx, ty) =
1

m

m
∑

i=1

∣

∣

∣

∣

f
ϕx(ui)

ϕy(ui)
− η(ui)

∣

∣

∣

∣

2

. (36)

6. Experimental Results

We evaluate our methods on real and synthetic data. We

use three types of relative error measurements to quantify

the robustness and accuracy of our method: isometry con-

straint, shape and reprojection. We test against noise in the

image, shape of the deformed object and number of corre-

spondences.

6.1. Implementation Details

We use MATLAB to perform experiments with

YALMIP [2] and SeDuMi 1.3 [1] to implement the MDH.

We perform the first refinement by ‘lsqnonlin’ and the sec-

ond refinement by ‘fmincon’ since we have to constraint the

sign of θ′.

6.2. Synthetic Experiments

A perspective camera model is used and the template is

normalized. To control the shape, we change the curvature

of a line, i.e. the inverse of the radius for an arc. First, we

compare the MDH (§5.1.2) and the analytical solution pro-

vided by the analytical solution (§5.1.1). The MDH is more

robust to deformation since its shape error is less than 1%

while the non-holonomic solution gives an average shape

error of 20%.

For experiments on curvature and number of points,

isometry is exactly fulfilled while reprojection is met to a

very good extent. The MDH fulfills the reprojection con-

straint because of its formulation, but shows higher errors

on the isometry since it is a relaxation and it forces points

to move along the sightlines. Figure 3 shows the error made

on reconstructing the 2D deformed curve as a function of

the three parameters.

For curvature and number of points, an additive gaussian

noise of σ = 1.0 px is added in the 1D image correspon-

dences. That explains why the MDH presents the highest

error in the figure. When curvature decreases, the ground

truth curve tends to be a line and both solutions merge. In

the same experiments, we observe that one refinement pro-

vides the solution near to the ground truth and the other one

a second isometric solution. Finally, the angle-based pa-

rameterization in both refinements allows to overcome the

errors made by the MDH, at a certain level of noise.

6.3. Real Experiments

Real data are built thanks to a 3D reconstruction of a bent

paper. Figure 4 shows the one used for these experiments:

we want to reconstruct the middle line shown by the cyan

line in the image. Two sets of images are taken: one for the

1D image and one for the 3D reconstruction from which we

can extract a 2D slice. To get the 1D image, the principal

axis of the camera has to intersect the bars region. The mid-

dle row of the image is thus considered for the 1D image.

We take images of size 4800 × 3200 px. The software Ag-

isoft photoscan [3] is used to reconstruct the 3D scene. We

construct a data set with 7 isometric deformations which are

soft, without self-occlusion and performed horizontally like

in figure 4.

Figure 4 shows good relative errors on shape (less than

1%) and, for all data, the 2D reconstruction results present

two solutions of deformed curves. We also give an example

of results that our method provides. This example illus-

trates well that sign of θ′ changes between two solutions of

equation (11) and that both solutions share the same critical

points.

7. Conclusion

We have presented a theoretical study of isometric

1DSfT and its implementation. 1DSfT reveals its com-

plexity through ODE analysis. We introduce the notion of

critical points which give a bound on the solution space.

We prove local exact 1DSfT solutions do not exist and

that 1DSfT cannot be solved uniquely. We give methods

to compute all solutions based on convex initialization

followed by non-convex refinements. We also contribute in

this work with an angle-based parametrization of isometric
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Figure 3. Synthetic data experiments. We show here the influence of three important parameters on the 1DSfT.
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Figure 4. Real data experiments. Evaluation of the results obtained by our method - Example of results with real data - Sign changes of θ′

- Image used to obtained the 1D image.

embeddings. Experiments with synthetic and real data

give encouraging results, but a more thorough evaluation

is needed considering complex deformation and different

image conditions. Possible extensions of this work include

curve-based 2DSfT and 1DSfT for more complicated slices

of 3D objects.
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