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Department of Computer Science
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Abstract

Dense 3D reconstruction still remains a hard task for a
broad number of object classes which are not sufficiently
textured or contain transparent and reflective parts. Shape
priors are the tool of choice when the input data itself is not
descriptive enough to get a faithful reconstruction. We pro-
pose a novel shape prior formulation that splits the object
into multiple convex parts. The reconstruction problem is
posed as a volumetric multi-label segmentation. Each of the
transitions between labels is penalized with its individual
anisotropic smoothness term. This powerful formulation al-
lows us to represent a descriptive shape prior. For the object
classes used in this paper the individual segments naturally
correspond to different semantic parts of the object. This
leads to a semantic segmentation as a side product of our
shape prior formulation. We evaluate our method on sev-
eral challenging real-world datasets. Our results show that
we can resolve issues such as undesired holes and discon-
nected parts. Taking into account a segmentation of the free
space, we show that we are able to reconstruct concavities,
such as the interior of a mug.

1. Introduction
Despite the continuous advances in dense 3D surface re-

construction there are still many object classes which are
a challenge for current algorithms. To tackle such classes
shape priors have been proposed. One approach to shape
priors is anisotropic surface regularization based on prior
knowledge about the shape. Convex multi-label segmen-
tation has been used in dense volumetric reconstruction to
jointly infer semantic labels and geometry [10] and to define
per object shape priors for challenging classes [9]. The first
work uses priors on the directions of transitions between
semantic classes, such as a preference of a ground↔ build-
ing transition to be horizontal. This leads to a prior on the
shape of semantic classes, which can be weak for general
shapes, as we will see later. The latter work defines a shape
prior for a given object class by having a spatially varying

Figure 1. Top: Example input image and depth map. Bottom:
Standard volumetric fusion result (left) and our result using the
proposed segment based shape prior (right).

anisotropic regularization. This leads to a very descriptive
prior, for example a tabletop is always horizontal, but has
the drawback that the object needs to be exactly aligned
with the bounding box. In this work, we propose an al-
ternative approach to get strong priors, namely splitting the
object into multiple simpler parts which we call segments.

To motivate our work we describe the example of a table
and observe that a prior based on a single spatially homoge-
neous anisotropic regularization does not lead to a descrip-
tive shape prior. First, we observe that the main surface
area on the top is horizontal and also there is large surface
area on the legs which is predominantly vertical. Hence
a prior on the surface orientation of a table should penal-
ize those mostly observed directions less than others. In
terms of dense volumetric 3D reconstruction the main dif-
ficulties in reconstructing a table are the thin leg structures
that easily get disconnected and holes appearing in the often
texture-less top surfaces. The single anisotropic prior would
not help in either of these cases. It would penalize holes in
the top and disconnected legs less and therefore make them
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Figure 2. Shape prior formulation for the table: The table gets segmented into convex parts (tabletop, and table legs), the transitions of each
part to other labels are taken into account, for each transition the smoothness is defined in terms of Wulff shapes. The dashed lines indicate
that the shape is very large in the indicated direction, meaning that this is an unlikely interface in the final reconstruction.

more likely, leading to a very weak shape prior. Our pro-
posed solution is, splitting the object into a top part and legs.
Now we can define three different smoothness terms for the
surface between the top and the legs, for the top and for the
legs. Now each of the surfaces has a strong predominant
direction, the top is mostly horizontal, the legs are mostly
vertical and the transition between the legs and the top is
strictly horizontal. Note that such a prior does not need an
exact location of the object, only the main directions need
to be known.

Often the segments of the object coincide naturally with
the semantic parts of an object. As we will see later, in
our formulation we do not make use of any semantic in-
formation. But due to the geometric difference of semantic
parts of an object we also naturally get a semantic segmenta-
tion. Including semantic classifiers to our method would be
straight forward using [10] but to underline the strength of
our prior, which is able to segment the object solely based
on distinctive geometry, we refrained from using any se-
mantic image classifier.

The idea of our shape prior formulation is coming from
the study of equilibrium shapes of crystals [23]. We will
explain that anisotropic surface regularization can be seen
as preferring object shapes which follow the same shape as
a convex example shape, named Wulff shape. The Wulff
shape is exactly the equilibrium shape of a crystal. Due to
the convexity of the Wulff shapes it becomes natural that our
input object shapes are split into convex or almost convex
segments. An illustration of this idea is given in Fig. 2.

1.1. Related Work

Dense 3D reconstruction from images is a well studied
topic in computer vision, we refer the reader to [21] for an
overview. Here, we mention only the most related works
to our approach. Dense volumetric 3D reconstruction was
originally proposed in [4]. The idea is to segment a volume
into free space and occupied space and extract the surface as
the interface between them. The original approach did not

contain regularization. Due to the high quality of the input
laser scans this was not necessary. However, in computer
vision the data is often contaminated by noise and (strong)
regularization is necessary. Traditionally, a prior that penal-
izes the surface area is utilized, it has been formulated in
both the discrete graph-cut based [14] optimization and the
continuous convex optimization literature [25]. Anisotropic
regularization has been included to improve surface details
[13]. In this work, the surface is aligned with an input nor-
mal field that is obtained from semi-dense multi view stereo.

Volumetric 3D reconstruction is not limited to the two
label case that separates free space and occupied space. As-
signing semantic classes to voxels leads to a multi-label for-
mulation that allows for joint reconstruction and semantic
segmentation [10]. In this formulation, each of the transi-
tions between two semantic classes is penalized differently
with an anisotropic smoothness term. Having a smoothness
term which prefers for example ground to be horizontal in-
troduces a shape prior on the semantic classes. This idea has
been extended to 3D object shape priors in [9], where a spa-
tially varying anisotropic smoothness term is derived from
training data and acts as a shape prior during reconstruction.
Using a spatially varying smoothness term leads to very de-
scriptive priors but needs an alignment between the prior
and the reconstruction. We argue that we can stick to a spa-
tially homogeneous anisotropic smoothness prior but split
the object into multiple convex segments instead, to make
the prior descriptive.

Segmenting objects into convex segments is a well-
studied problem in computer vision, computational geome-
try, computer graphics and related fields [17, 3, 15, 16, 18].
The aims for splitting objects into simpler parts in these ar-
eas are, for example, to handle tasks such as collision avoid-
ance, simplify manufacturing of objects with 3D printers
and similar devices, or reduce a problem to an algorithm
which works on convex shapes only.

The idea of splitting objects into parts has also been used
for object detectors in images [6]. Different parts of objects



such as hands, head and torso of a body have a different
appearance and treating them as individual parts improves
the detection quality. For semantic segmentation of images,
structured representations have been proposed [7, 22, 5].

In our work we argue that by segmenting an object into
multiple convex parts we can derive more descriptive priors
without the need of a spatial alignment between the prior
and the reconstruction.

2. Formulation
In this section we will present the mathematical formu-

lation of our segment based object shape prior. The tradi-
tional dense volumetric 3D reconstruction segments a voxel
space into free space and occupied space [4] and extracts
the surface as a transition between the free and occupied
space. We are using a recently introduced framework which
extends these ideas to dense volumetric multi-label seg-
mentation [10]. The formulation originates from continu-
ous multi-label segmentation [2] and has been extended to
handle anisotropy and non-metric smoothness, at the same
time, in its discretized form [26]. This becomes important
for some of our examples later on. In the following we will
first describe the convex multi-label segmentation formula-
tion which we are using and then we will explain how we
apply this formulation to our proposed segment based 3D
object shape prior.

2.1. Convex multi-label segmentation

We directly explain the final convex multi-label formu-
lation in its discretized form. For more information on how
it is derived, we refer the reader to [2, 26].

For our purposes, the goal is to assign labels to a vol-
umetric domain. We denote the discretized domain by
Ω ⊂ R3 and index the voxels by a position index s. L =
{0, . . . , L − 1} is a set of labels, where each of the labels
corresponds to one of potentially multiple free space labels
or one of the occupied space labels. Its meaning is object
class specific and will be explained in Section 3. To for-
malize the label assignment task label indicator variables
xis ∈ [0, 1] are introduced, where xis = 1 if label i is as-
signed to voxel s and xis = 0, otherwise. Next we state the
convex energy and will explain its interpretation afterwards.

E(x) =
∑
s∈Ω

∑
i

ρisx
i
s +

∑
i,j:i<j

φij(xijs − xjis )


subject to xis =

∑
j

(xijs )k, xis =
∑
j

(xjis−ek)k (1)

xis ≥ 0,
∑
i

xis = 1, xijs ≥ 0

The variables xijs ∈ R3 are used to describe transition gra-
dients of the label indicator functions. The variables are

only allowed to be non-negative and hence cannot describe
full gradients, but by taking the difference yijs := xijs −xjis ,
the length of the vectors yijs describe the amount of change
from label xis to label xjs in the direction of yijs . The func-
tions φij : R3 → R+ are convex positively 1-homogeneous
functions that act as an anisotropic regularizer of the sur-
face area [19]. The ρis ∈ R are the unary data costs. They
describe the local preference for label i in voxel s. The
index k describes the dimension and ek is the k-th cannon-
ical basis vector. A first set of constraints, which are called
marginalization constraints make sure that the variables xijs
agree with the label indicator variables xis. Finally, the sec-
ond line of constraints describes normalization constraints
on xis which ensure that a label gets selected in each voxel
and the non-negativity constraints on the xijs .

To arrive at a convex energy the label indicator variables
are allowed to attain values between [0, 1]. In an ideal case
we would like to get mostly binary assignments for the xis,
however, not only the convex relaxation requires non-binary
assignments but also around a transition describing a sur-
face we expect non-binary assignments. This is necessary
to allow the transition gradients yijs to point in arbitrary di-
rections and is introduced into the formulation as an effect
of the discretization of the original optimization problem
defined on a continuous domain.

After summarizing the main ingredients of the convex
multi-label formulation, we can now introduce our novel
segment based 3D object shape prior formulation.

3. Segment based shape priors

As we have mentioned earlier our goal is to define spa-
tially homogeneous anisotropic smoothness terms that act
as a shape prior. We have observed earlier that the main
problem with this approach is that not each object can be
represented descriptively in this way. One solution to this
problem is to have an anisotropic smoothness prior which is
different for each voxel [9]. But this comes with the prob-
lem that the volume Ω needs to be exactly aligned with the
object. Here, we propose a different solution, namely split-
ting the object into multiple segments and regularize each
of the transitions between the segments differently, but with
one single smoothness term for the whole volume. With this
approach we can drop the necessity of an exact alignment.
Only the main directions of the object need to be known.

3.1. From Wulff Shapes to Convex Segments

The definition of the anisotropic smoothness term φij

that we are using in the following, was presented in terms
of a Wulff shape Wφij [19] and is defined as

φij(n) = max
p∈Wφij

pTn. (2)
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Figure 3. Wulff shape illustration in 2D: The Wulff shape induces
an anisotropic smoothness term. The distance from the origin to
the black line in direction n is the cost dn for a normal direction
n. The construction is indicated with gray lines. Naturally the re-
constructed shape using this prior has the same shape as the Wulff
shape.

Mathematically, the Wulff shape is defined as convex shape
that contains the origin. The name was given to them by
George Wulff, who studied the growth of crystals in liquids
[23]. His findings were that the equilibrium shape of a crys-
tal is defined by the Wulff shape. This connection between
equilibrium crystal shapes and anisotropic surface regular-
ization means that describing the preference for a certain
object shape can be achieved by using an anisotropic reg-
ularizer that is induced by a Wulff shape having the ob-
ject’s shape. The construction of the shape works as fol-
lows: Consider direction n, draw a plane orthogonal to n
which has a distance dn to the origin. dn corresponds to
the amount we want to penalize a surface of direction n.
Doing this for all directions leads to a convex shape, the
Wulff shape, which is formed by the inner envelope of all
the planes. This relationship between distance of planes and
cost in a direction is expressed through Eq. 2 . An illustra-
tion of how this works for a box Wulff shape is depicted in
Fig. 3. Going back to the example of a table we now ob-
serve that the shape of the table is not convex and hence a
single anisotropic smoothness term does not lead to a de-
scriptive prior. Having made this observation, it becomes
clear that in order to derive descriptive priors we need to
segment our input object into parts which are sufficiently
convex.

Let m1, . . . ,mM , be a set of M convex segments into
which our input object is split. The problem of splitting a
shape into convex parts has been well studied (for exam-
ple [3, 16]). To be able to get a faithful reconstruction we
also need to model the supporting ground of the object. It
follows that the label space L is composed out of the la-
bels 0: free space, 1: ground and all the segments, hence
L = {0, 1,m1, . . . ,mM}. With the segments being close
to convex, they can be described nicely by convex regular-
ization functions φij . In order to utilize the convex energy
Eq. 1, the data costs ρis and the regularization functions

φij need to be defined. The φij need to be defined for
each of the transitions between labels i and j. They can
either be derived from training data [10, 9] or manually de-
signed. The ρis are the unary data costs. They describe a
local preference for label i in voxel s and are derived from
a set of input depth maps (see Sec. 3.3). There is no seman-
tic classifier involved. The actual labels for the segments
are chosen by the optimization based on the regularization
term. Our method is illustrated in Fig. 2. First the table
gets segmented into convex parts then we determine all the
transitions. As a last step the smoothness terms for all the
interfaces between the labels are defined in terms of Wulff
shapes. In this step the outline of the convex segment gets
split into multiple parts which have different neighboring
interfaces. The combination of all these interfaces forms
the prior for the whole segment.

In this work the label chosen for each of the convex seg-
ments coincide with semantic parts of the shape. The label
for each segment is determined solely through our shape
prior formulation. However, our method is not limited to
these kind of segmentations. Semantic classifiers could be
naturally included into the formulation as presented in [10].
For this work we chose not to include a semantic classifier
to underline the strength of our prior.

3.2. Free Space as Convex Segments

Splitting the geometry into multiple segments is not lim-
ited to the occupied space. It is also possible to split the free
space into multiple classes. This becomes interesting when
reconstructing classes such as mugs which generally have
a carved out inner part which is hard to observe in the in-
put data. The general shape of a mug is highly non convex
and in general it needs an almost infinite amount of convex
segments. However, if we look at the mug with its inner
space filled, then it is a convex object and also the filling
itself is convex. Introducing a segment for the ”inside free
space” and interpreting it as a subtraction of a convex seg-
ment allows a highly non-convex object such as a mug to be
efficiently handled by our approach. By having a preference
in the unary term for ”inside free space” it can be encoded
that the object should be carved out if the input data does not
disagree. Moreover, having a horizontal ”inside free space”
↔ ”free space” transition expensive we can ensure that the
mug does not contain any unwanted holes.

Note that this choice of smoothness cost will not form
a metric. In horizontal direction a transition ”inside free
space” ↔ ”mug” plus a transition ”mug” ↔ ”free space”
needs to be cheaper than the direct transition ”inside free
space” ↔ ”free space”, which violates the condition for a
metric. This is not a problem, as the formulation we are us-
ing, explicitly allows for non-metric smoothness costs [26].



Figure 4. From left to right: example input image, example depth map, baseline TV-flux fusion result, result using our shape prior formu-
lation, PMVS+PSR result.

3.3. Data Term

The method takes as input a set of depth maps. In order
to use them in our formulation they need to be transformed
into the unary data term ρis. The depth maps contain in-
formation about the geometry but no information about the
individual labels i. Therefore our data term is only defined
in terms of occupied space labels and free space labels. For
a two label problem it is enough to define a data cost for one
of the two labels, here we only define the cost for occupied
space and denote it as ρs. Assigning 0 cost to free space
labels implicitly assigns a cost of −ρs to free space labels
through the optimization. For the occupied label cost ρs at
voxel s we follow the approach that assumes that in front
of an estimated depth d̂s in the depth map, associated with
voxel s, we expect free space and behind we expect occu-
pied space, in a small region [9]. If a voxels’ depth ds lies
in front of the estimated depth d̂s given in the depth map,
we add a constant positive weight β to ρs and if ds is be-
hind d̂s we add −β to ρs. Along the viewing ray from the
camera center up to d̂s we expect free space. This assump-
tion holds only if there are no outliers in the data. To use
the information along the viewing ray and still stay robust
against outliers we add only a small positive cost ε along the
viewing ray to ρs.

4. Implementation
In this section we describe some details about our im-

plementation. The smoothness priors for all transitions be-
tween all the labels can be derived from training data [10, 9].
The two proposed approaches differ in the way the Wulff
shapes are parameterized. While in general any convex
shape can be parameterized reasonably well as an intersec-
tion of half spaces [9] this has the drawback that shapes
such as cylinders need many different half spaces for a faith-
ful representation of the round parts. On the other hand,
it is possible to define a catalog of basic shapes, such as a

sphere, a cylinder or a box and let the training procedure de-
cide which of the elements of the catalog fit best with which
parameters as a maximum likelihood estimation [10].

For both methods the input data to the training procedure
is a set of mesh model of all the transitions. In order to have
an efficient optimization we decided to use a slightly mod-
ified version of the training procedure given in [10]. The
main difference is that we do not model the Wulff shape in
terms of a sum of an anisotropic and an isotropic part but
directly derive the parameters for one single Wulff shape.
With nij we denote the normal vector for a boundary be-
tween label i and j. i ↔ j denotes a transition between i
and j. Now we define the probability of having a transition
with normal direction nij by

P (nij) = exp(−φij(nij)), (3)

subject to
∫
n∈S2 exp(−φij(nij))dn = P (i ↔ j). As basic

shapes we consider a box, a cylinder and a hemisphere plus
an attached spherical cap [10]. The only difference to [10] is
that we now need to fulfill the above constraint while train-
ing. This, we addressed by doing a grid search for all but
one parameter of the basic shape and find the last one using
Brent’s method [1] such that the constraint is fulfilled. This
slightly adapted grid search approach finds the maximum
likelihood estimate of the Wulff shape parameters.

After having the smoothness in place, the convex multi-
label energy Eq. 1 is minimized with the first order primal-
dual algorithm [20]. The energy can easily be transformed
into the primal-dual saddle point form by inserting the
primal-dual formulation (Eq. 2) and Lagrange multipliers
for the constraints (c.f. [9]).

5. Results
We evaluated our method on the challenging real-world

objects classes, trees, tables, dumbbells and a mug. We col-
lected images with either a hand held compact camera and
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Figure 5. Shape prior formulation for the trees: The tree gets segmented into convex parts (foliage and trunk), the transitions of each part
to other labels are taken into account, for each transition the smoothness is defined in terms of Wulff shapes. The dashed lines indicate that
the shape is very large in the indicated direction, meaning that this is an unlikely interface in the final reconstruction.

Figure 6. From left to right: Example input image, example depth
map, baseline TV-flux fusion result, result using our shape prior
formulation.

in addition for the trees aerial images captured by a flying
drone. The camera poses are obtained by using the pub-
licly available structure from motion software [27]. As an
input to our formulation we computed depth maps using
plane sweeping stereo matching [24] for each of the im-
ages. As an image dissimilarity measure we used the zero-
mean normalized cross-correlation (ZNCC). For occlusion
handling, we only accept the best K matching scores [11].
The main directions of the objects where determined by a
manual alignment step.

We compare all our results to a baseline approach which
reconstructs the same unary terms ρs using an isotropic reg-
ularization (TV-flux fusion of [25]). This choice of baseline
directly shows the effect of using our prior. To illustrate
how other state of the art reconstruction methods perform
on our datasets we include results using patch based multi-
view stereo (PMVS) [8] and poission surface reconstruction
(PSR) [12], for some object classes. PMVS was run with
the default parameter values and for PSR we hand tuned
the parameters for best reconstructions. The results for the
individual object classes and their main difficulties are dis-
cussed in the following.

5.1. Table

We gathered a training dataset of 11 mesh models of rect-
angular IKEA dining and coffee tables. As a first step we
split the training mesh models into the individual segments
by cutting off the table legs. This segments the table into a
tabletop and table legs, Fig. 2 Then we extract mesh mod-
els for all the individual transitions plus a manually inserted
ground plane. This data is then inserted into our training
procedure to obtain the Wulff shapes, which defines our
shape prior for the table class.

The individual Wulff shapes that are used to reconstruct
a table are indicated in Fig. 2. We observe that the leg has
a strong preference to be vertical, on the top it can cheaply
change to tabletop and on the bottom to ground. This very
descriptive nature of the geometry leads to a very strong
prior for the table class. The smoothness of the table top
prefers a box with a large horizontal extent.

The results we obtained are depicted in Fig. 4. The main
problems with the baseline approach not using a shape prior
are holes in the tabletop and disconnected legs. Our prior is
able to resolve these issues in the reconstruction. We also
get a reliable segmentation of the table into its semantic
parts.
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Figure 7. Shape prior formulation for the mug: The mug is segmented as a single convex part (mug) and an interior convex part (inner
free space) which gets carved out, the transitions of each part to other labels are taken into account, for each transition the smoothness is
defined in terms of Wulff shapes. The dashed lines indicate that the shape is very large in the indicated direction, meaning that this is an
unlikely interface in the final reconstruction.

Figure 8. Top row, from left to right: example input image, example depth map, baseline TV-flux fusion result. Bottom row, from left
to right: result of our formulation (inner free space inside the mug), result of our shape prior formulation (mug and inner free space
separately), PMVS+PSR result.

5.2. Tree

We manually split trees into foliage and trunk. The Wulff
shapes and their parameters where hand selected and are de-
picted in Fig. 5. The behavior of the smoothness is similar
as for the table. The trunk is a mostly vertical segment that
connects to the foliage on the top and to the ground on the
bottom. The foliage is modeled with an isotropic prior. The
smoothness between the foliage and the ground is chosen to
be a very strong isotropic smoothness as such a transition
very rarely occurs.

For the evaluation of the object class trees we used two
types of imagery. We used terrestrial images as well as
aerial images. The results for both are depicted in Fig. 6.
On terrestrial images already the baseline produces faithful
geometry but our shape prior formulation gives in addition
to the geometry also a segmentation of the object. An im-
portant case for trees are aerial images. In this case trunks
get often disconnected as they are hard to observe from the
air. Our formulation allows for a complete reconstruction

of very weakly observed trunks.

5.3. Mug

In order to be able to reconstruct a mug faithfully it is im-
portant to reconstruct the inside of the mug correctly. For
many methods this is challenging as the concavity is often
weakly observed in the depth maps and moreover often false
matches on the top lead to a filled mug. With our method
we can model the inside free space as a segment of the free
space. This allows us to make a concavity cheap. We also
include a slight preference for the inside free space label
in the data term. The smoothness of the mug and the in-
side free space is modeled with cylinder shapes and shapes
preferring a particular single direction. The shape prior for-
mulation is indicated in Fig. 7. Note, that a transition of
inside free space to any other label than mug is only cheap
in the vertical direction. This ensures that there are no holes
in the mug. For this class we manually defined the Wulff
shapes.

Fig. 8 shows an example of a reconstruction of a mug.
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Figure 9. Shape prior formulation for dumbbells: Dumbbells get segmented into convex parts (bar and disks), the transitions of each part
to other labels are taken into account, for each transition the smoothness is defined in terms of Wulff shapes. The dashed lines indicate that
the shape is very large in the indicated direction, meaning that this is an unlikely interface in the final reconstruction.

Figure 10. From left to right: Example input image, example depth map, TV-Flux fusion result, result of our shape prior formulation.

The baseline method is not able to reconstruct the mug cor-
rectly. Also the additional PMVS+PSR result shows the
same behavior. Using our proposed shape prior the interior
gets carved out correctly and there are no holes in the mug
surface.

5.4. Dumbbell

Also dumbbells can nicely be modeled with our formu-
lation. A dumbbell is geometrically made out of different
cylinders. Hence most of the Wulff shapes are cylindrical
(see Fig. 9). Our results on this class are depicted in Fig.
10. While the geometry is already faithfully reconstructed
using the baseline our formulation outputs a segmentation
in addition to the geometry.

6. Conclusion
In this paper we described an approach to shape priors

which segments the object into multiple convex segments.
The prior is defined in terms of anisotropic smoothness
terms for the individual transtions between the labels in a
volumetric setting. Because of the spatial homogenity of
the smoothness term, our method has the advantage that the
prior does not need to be exactly aligned with the object.
We only require an alignement with respect to the orienta-
tion of the object. However, our prior is still descriptive due
to the splitting of the object into multiple segments. For
the objects which we used for this work, the segments also
naturally agree with the semantic classes.

In our evaluation we demonstrated on multiple object
classes that our prior is able to overcome the limitations of

the baseline approach that does not use a shape prior. The
often appearing holes and disconnected parts are fixed with
our shape prior formulation. At the same time a convincing
semantic segmentation is obtained as a side product of our
method. We also demonstrated that we can correctly carve
out concavities on the example of a mug.

Our formulation could also naturally be combined with
semantic classfiers, leading to a joint reconstruction and re-
congnition formulation. In the future we also plan to in-
vestigate the reconstruction of larger scenes with multiple
different objects present. This poses novel problems to the
optimization as the number of variables in the optimization
problem grows quadratically with the number of labels.
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