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This paper deals with the problem of tracking unknown objects (model-

free tracking) by formulating a novel keypoint-based approach. As keypoint

matching is ambiguous, robust methods such as RANSAC are often used to

evaluate the fitness of the matches. Typically, strong assumptions about the

motion model are made, of which the rigidity assumption probably is the

most common one. However, one of the biggest challenges for tracking are

articulated objects, often invalidating this assumption. Aiming at allowing

for deformations to be handled, a strand of research has recently emerged

in object recognition, studying how to incorporate spatial constraints in ad-

dition to photometric constraints [1] into the matching of keypoints. In our

work, we adopt similar ideas in the context of model-free object tracking

and formulate the following approach.

In each frame t, our aim is to identify the matches Lt = {m1, . . . ,mn}
that represent the object of interest as accurately as possible. The individual

steps of our approach are shown in Figure 1. We employ a static appearance

model (top left) that is based solely on the initial appearance of the object,

composed of the descriptors around all keypoints x0
i , which are obtained by

an interest point detector. We employ a global search in order to establish

matches between keypoints x0
i from the initial frame and candidate interest

points xt
j in the current frame t (top center). The static model is robust and

handles for instance the re-detection of keypoints after occlusions. How-

ever, it does not adapt to new object appearances. In contrast, our adaptive

model is updated in every frame, comprising the image patches around all

xt−1
i ∈ Lt−1 (top right). By estimating sparse optic flow from frame t −1 to

frame t, we establish correspondences efficiently by means of a local opti-

mization [4]. We then employ a pairwise dissimilarity measure D between

correspondences mi and m j based on their geometric compatibility, directly

reflecting the deformation of the object of interest. D is then used to partition

L∗
t into subsets by employing a standard agglomerative clustering algorithm

using single linkage, where a cutoff threshold δ is used in order to form flat

clusters. The parameter δ steers the degree of tolerated deformation, where

0 means complete rigidity. We define D to be

D(mi,m j) =
∥

∥

∥
(xt

i −Hx0
i )− (xt

j −Hx0
j)
∥

∥

∥
, (1)

where ‖.‖ denotes the Euclidean distance and H is a similarity transform

that is estimated from L∗
t . Note that D is invariant to translations of xt

i and

xt
j by a common displacement vector. It is therefore sufficient to estimate H

up to scale s and rotation α , which is accomplished by two heuristics [2, 5].

We assume that the largest cluster L+
t contains the correspondences relevant

for the object, while correspondences of all other clusters belong to clutter

(bottom left). Similar descriptors appearing on multiple parts of the object

or in the background pose a major problem in descriptor matching. Based

on L
+
t , we disambiguate correspondences by excluding candidate keypoints

that are geometrically dissimilar to L
+
t in a second matching round (bottom

center). Finally, a rotated bounding box is computed using H (bottom right).

For our experiments, we detect and describe interest points by using

BRISK [3], due to its invariance to scaling and rotation. For a quantitative

assessment of tracking performance we employ the tracking dataset of Vojir

et al. that is composed of 77 sequences. The sequences are a compilation

of datasets that have been widely used in the evaluation of various tracking

approaches. Most of the objects of interest in this dataset are non-rigid, thus

rendering it suitable for evaluating our approach. We compare tracker output

bT to ground truth data bGT using the overlap measure

φ(bT ,bGT ) =
bT ∩bGT

bT ∪bGT
. (2)

We perform a comparison of our method to five state-of-the-art trackers.

The result is shown in Figure 2. On the left, the evaluation according to [6]
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Figure 1: Outline of our approach.
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Figure 2: Comparison to five state-of-the-art trackers.

is shown, visualizing the distribution of per-frame overlap measurements.

On the right, the evaluation according to [5] is shown, visualizing the per-

sequence recall, obtained by employing a threshold of φ > 0.5 on each

frame. Our method dominates both evaluations, demonstrating that our al-

gorithm is applicable to a wide variety of object classes and scenes.
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