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Abstract

In contrast to category-level or cluster-level classifiers,
exemplar SVM [17] is successfully applied to classifying (or
detecting) a target object as well as transferring instance-
level annotations. The method, however, is formulated in a
highly biased classification problem where only one posi-
tive sample is contrasted with a substantial number of neg-
ative samples, which makes it difficult to properly determine
the regularization parameters balancing two types of costs
derived from positive and negative samples. In this paper,
we present two novel viewpoints toward exemplar SVM in
addition to the original definition. From these proposed
viewpoints, we can give light on an intrinsic structure of
exemplar SVM, reducing two parameters into only one as
well as providing clear intuition on the parameter, in order
to free us from exhaustive parameter tuning. We can also
clarify how the classifier geometrically works so as to pro-
duce homogeneous classification scores of multiple exem-
plar SVMs which are comparable to each other without cal-
ibration. In addition, we propose a novel feature transfor-
mation method based on those viewpoints which contributes
to general classification tasks. In the experiments on object
detection and image classification, the proposed methods
regarding exemplar SVM exhibit favorable performance.

1. Introduction
Classification plays a key role in various pattern recogni-

tion problems such as image recognition and object detec-
tion. In a real world, there are a lot of categories to be clas-
sified, and those multi-class problems are usually treated
by dividing multiple categories in a one-vs-rest manner [5].
Namely, a standard procedure for training multi-class clas-
sifiers is to discriminate a specific object category (car, bike,
etc.) from the other categories, resulting in class-specific
classifiers of which number is equal to that of categories
(Fig. 1a). This approach assumes that samples in a category
are well described by using a single parametric model, e.g.,
linear decision boundary, but it might be actually infeasible.
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Figure 1. Classification levels. (a) Category-level classification is
commonly applied to deal with multi-class problems in a one-vs-
rest manner. (b) Cluster-level classifier captures more detailed dis-
tribution within the category, and (c) instance-level classification
is defined at the finest resolution of classification and provides cor-
respondence to an exemplar.

To alleviate it, samples in a category are further di-
vided into clusters [18] and then the above classification
procedure is applied to provide cluster-based representation
(Fig. 1b). Clustering metrics are, for example, based on ob-
ject scale [4] and object view [11]. The clustering-based
methods contain a parameter regarding the number of clus-
ters which is generally difficult to be properly determined;
a small number of clusters contain large variability within a
cluster. In a slightly different approach, poselet method [3]
which focuses on detecting people decomposes the category
in terms of parts, though requiring exhaustive human effort
for labeling parts.

Recently, such direction reaches an extreme classifica-
tion problem, called exemplar SVM [17], in which each in-
stance sample (exemplar) is discriminated from the other
samples; that is, a category is divided into samples at the
finest resolution (Fig. 1c). In contrast to clustering-based
methods, exemplar SVM is a non-parametric method since
the number of clusters corresponds to that of samples. The
method of exemplar SVM is advantageous in the following
two points.

First, exemplar SVM classifier provides correspondence
of an input sample to an exemplar, making it possible to di-
rectly transfer annotations of the exemplar to the input sam-
ple. In contrast, category-based methods can provide only
category representative information, usually class label, and



even in clustering-based methods, it is hard to convey such
instance-level information due to coarse alignment of clus-
ters on samples.

Second, each positive sample is discriminated from
plenty of negative samples and thus the information of neg-
ative samples is parametrically exploited in a form of classi-
fier without holding samples themselves. Therefore, a sub-
stantial number of negatives are effectively utilized for im-
proving discriminative power in exemplar SVM, while in
k-NN the number of samples to be kept is limited.

Exemplar SVM is applied in various methods, such as la-
bel propagation to point clouds [28], visual similarity learn-
ing [1], scene classification [13] and 2D alignment of 3D
model [2]. The method, however, has difficulty in determin-
ing (tuning) two regularization parameters that balance ef-
fects of positive and negative classification costs, due to the
highly biased classification problem where only one posi-
tive sample is contrasted with a large number of negative
samples. Besides, classification scores of multiple exemplar
SVMs are required to be calibrated so as to be comparable
among an ensemble of heterogeneous classifiers which are
individually trained.

In this paper, we present three viewpoints for exemplar
SVM; one is original formulation while the other two are
novel. From these viewpoints, we can give light on an in-
trinsic structure of exemplar SVM. Specifically, the regu-
larization parameters, which are hard to be determined in
the original exemplar SVM, are reduced into only one pa-
rameter whose role is also clearly provided so as to intu-
itively determine the parameter value. And, we can clarify
how the classifier geometrically works, which frees us from
carefully calibrating the classification scores. As a result,
exemplar SVM can be utilized more simply without care-
ful tuning. In addition, those viewpoints lead to novel fea-
ture transformation using exemplar SVM. Although exem-
plar SVM has been mainly applied to detection tasks so far,
the proposed method of feature transformation contributes
to improve performance on general classification tasks.

2. Three viewpoints for exemplar-SVM
We begin with reviewing an original definition of ex-

emplar SVM (ex-SVM) [17] and then present two novel
viewpoints toward it; these are outlined in Fig. 2. Conse-
quently, we propose a novel formulation of ex-SVM which
is more simplified with only one parameter, while original
ex-SVM [17] contains two parameters, and gives clearer ge-
ometrical intuition to the classifier.

2.1. Formulation by binary classification

Exemplar SVM (ex-SVM) is originally formulated
in [17] as a binary classification problem to discriminate
only one target positive sample x ∈ Rd from the other neg-
ative samples {ξi}Ni=1 (Fig. 2a). It leads to the following
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Figure 2. Three viewpoints for exemplar SVM: (a) Original formu-
lation of large margin binary classification [17], (b) the first novel
viewpoint by one-class large margin classifier and (c) the second
novel viewpoint by least-square reconstruction. Gray circle in-
dicates the target positive sample, while the others are negative
samples.

large margin formulation in the same manner as standard
SVM [25]:

min
w,b

1

2
‖w‖2 + Cph(1−w>x− b)

+ Cn

N∑
i=1

h(1 +w>ξi + b), (1)

where h(x) = max(x, 0) is a hinge loss function and Cp
and Cn are regularization parameters for balancing the pos-
itive and negative costs. Ex-SVM is characterized by this
highly unbalanced formulation in which only one positive
sample is contrasted with plenty of negative samples drawn
such as from the categories other than the target one. There-
fore, it is required to carefully tune the regularization pa-
rameters Cp and Cn.

The above formulation (1) has the following dual.

min
α̂

1

2
α̂>K̂α̂− 1>α̂, (2)

s.t. α0 −
N∑
i=1

αi = 0, 0 ≤ α0 ≤ Cp, 0 ≤ αi ≤ Cn,∀i ≥ 1,

where α̂ = [α0, α1, · · · , αN ]> ∈ RN+1 are Lagrangian
multipliers; α0 is for the positive samplex, whileαi (i ≥ 1)

is for the negative sample ξi. The matrix K̂ ∈ RN+1×N+1

is composed of

K̂ =

[
k(x,x) −k>
−k K

]
, (3)



where k is a kernel function, k ∈ RN is a kernel vector
between x and {ξi}Ni=1, i.e., ki = k(x, ξi), and K is the
kernel Gram matrix of {ξi}Ni=1, i.e., Kij = k(ξi, ξj). In the
case of linear kernel, an ex-SVM classifier is given by

y = w>z + b, (4)

where b is a bias determined so as to give equal margin for
positive and negative boundaries (Fig. 2a), and by using the
optimizers {α∗i }Ni=0 in (2), the weight vector w is given by

w = α∗0x−
N∑
i=1

α∗i ξi. (5)

In what follows, we assume linear kernel for simplicity.

2.2. Formulation by one-class SVM

Next, we reformulate ex-SVM from a novel viewpoint
of one-class SVM [22] by rewriting the dual problem (2).
Since (2) is convex, it is equivalent to

min
α∈RN

1

2
α>Kα− α∗0k>α+

1

2
α∗0

2k(x,x)− 2α∗0, (6)

s.t.

N∑
i=1

αi = α∗0, 0 ≤ αi ≤ Cn,

where α0 is fixed to its optimizer α∗0. By ignoring the con-
stant term regarding α∗0, this is further rewritten to

min
α

1

2
α>K̄α, s.t.

N∑
i=1

αi = α∗0, 0 ≤ αi ≤ Cn, (7)

where K̄ = K − 1k> − k1> + k(x,x)11> which is the
kernel Gram matrix centered at x; in the case of linear ker-
nel, K̄ij = (ξi − x)>(ξj − x). For more simplicity, we
rescale Lagrangian multipliers α by α∗0

1 and consequently
obtain the final form of

min
ᾱ

1

2
ᾱ>K̄ᾱ, s.t.

N∑
i=1

ᾱi = 1, 0 ≤ ᾱi ≤
Cn
α∗0

=C. (8)

This is exactly the same as the dual of one-class SVM
(oc-SVM) [22] with a regularization parameter C. Thus,
we can insist that exemplar SVM is intrinsically reduced to
one-class SVM in the feature space centered at the target
sample x as shown in Fig. 2b. From this viewpoint, the
classifier is optimized so as to maximize a margin from the
positive sample x to the negative samples at boundary since
the primal problem for (8) is formulated as

min
w,ρ

1

2
‖w‖22 − ρ+ C

∑
i

h(ρ−w>(ξi − x)), (9)

1Note that α∗0 > 0 since α∗0 = 0 leads to α∗i = 0,∀i,which obviously
violate KKT conditions.

where a margin is measured as the distance ρ
‖w‖2 from the

origin to the boundary samples ξi−x ofw>(ξi−x)−ρ=0.
This formulation for ex-SVM gives a classifier by

y = w>z − ρ, (10)

where ρ is determined such that w>ξi − ρ = 0 for {i|0 <
ᾱ∗i < C}, and

w = −
N∑
i

ᾱ∗i (ξi − x) =
1

α∗0
(α∗0x−

N∑
i

α∗i ξi), (11)

where we use ᾱ∗i =
α∗i
α∗0

and
∑N
i ᾱ
∗
i = 1. Note that the

direction of w is opposite to ordinary oc-SVM for consis-
tency with ex-SVM that discriminates x from {ξi}Ni=1. This
form corresponds to that of ex-SVM (5) except for the scal-
ing by 1

α∗0
which does not affect classification. Thus, we

can say that ex-SVM (1) and oc-SVM (9) produce the same
classifier except for the scaling. Due to clear geometrical
intuition that a margin is measured from the boundary neg-
ative samples, we employ (10) as an ex-SVM classifier.

This insight into ex-SVM is also practically useful in the
following three points regarding parameter issues.

1. Two parameters Cp and Cn required in the original ex-
SVM formulation are reduced to only one parameter
C.

2. The paramter C is limited in 1
N ≤ C ≤ 1 according to

the constraints
∑N
i=1 ᾱi = 1, ᾱi ≥ 0.

3. We can clarify an intuitive role of the parameter C;
the number of support vectors (outliers) is controlled
by C [22] and is greater than 1

C
2. Thus, in the case

that negative samples are all drawn from the categories
other than the target one, we can simply set C = 1
assuming minimum outliers.

2.3. Formulation by least squares

Finally, we show the third viewpoint for exemplar SVM
in the framework of least squares. We consider a problem
to reconstruct x by using (restricted) convex combination
of {ξi}Ni=1;

x ≈
N∑
i=1

ᾱiξi, s.t.

N∑
i=1

ᾱi = 1, 0 ≤ ᾱi ≤ C. (12)

2In oc-SVM [22], the regularization parameter is givecn by C = 1
Nν

where ν is the ratio of support vectors among N samples.



The optimum coefficients ᾱ∗ are obtained by applying the
following least-square method;

min
0≤ᾱ≤C

1

2
‖x−

N∑
i=1

ᾱiξi‖22, s.t.
N∑
i=1

ᾱi = 1, (13)

⇔ min
0≤ᾱ≤C

1

2
ᾱ>Kᾱ− k>ᾱ+ k(x,x), s.t.

N∑
i=1

ᾱi = 1,

(14)

⇔ min
0≤ᾱ≤C

1

2
ᾱ>K̄ᾱ, s.t.

N∑
i=1

ᾱi = 1. (15)

In the case of C = 1,
∑N
i=1 ᾱiξi covers whole convex hull

of {ξi}Ni=1 and (15) provides orthogonal projection onto the
convex hull (Fig. 2c). The primal problem (15) is the same
quadratic programming (QP) as (8) and the residual vector
x −

∑
i ᾱ
∗
i ξi is equivalent to the classifier vector w of oc-

SVM (11) and ex-SVM (5) except for the scaling as men-
tioned above. Thus, note that this least-square formulation
is connected to ex-SVM via the dual problem in oc-SVM.

The least-square formulation is also found in (unsuper-
vised) similarity metric learning methods [27, 15]. Based
on a locally linear assumption as in LLE [20], those meth-
ods employ the model to approximate a sample vector
by non-negative convex construction of the other samples.
They are different from the least-square formulation for ex-
SVM in that the optimized non-negative coefficients ᾱ∗i are
utilized to construct similarity measure between x and ξi,
while we make use of the residual vector for an ex-SVM
classifier. In that sense, the similarity learning methods and
ex-SVM are complementary to each other, through the iden-
tical QP formulation.

2.4. Summary

We have shown that in exemplar SVM, maximizing stan-
dard SVM margin (Sec. 2.1) corresponds to maximizing a
margin from the target positive sample (Sec. 2.2), and even
to minimizing reconstruction residual for the positive sam-
ple in a least-square manner (Sec. 2.3). From the oc-SVM
viewpoint, parameters are reduced to only one, C, which is
inherently restricted intoC ∈ [ 1

N , 1] (we usually setC = 1)
and controls the amount of support vectors (outliers). This
significantly reduces exhaustive parameter tuning. From the
least-square viewpoint, we can give geometrical interpreta-
tion to an ex-SVM classifier as well as to the Lagrangian
multipliers (as similarity), which leads to propose novel fea-
ture transformation in Sec. 4. These three viewpoints are
shown in Fig. 2.

At the last, we refer to an extreme case of C = 1
N . In

that case, the Lagrangian multipliers simply result in ᾱ∗i =

1
N , ∀i, and the classifier vector w is described as

w = x− 1

N

N∑
i=1

ξi, (16)

which is regarded just as subtracting the mean of negative
samples. On the other hand, LDA version of exemplar SVM
is also proposed for computational efficiency [2] by apply-
ing two-class linear discriminant analysis (LDA) [7];

w = S−1
W (x− 1

N

N∑
i=1

ξi), (17)

where SW is a within-class scatter matrix. This is the same
form as (16) except for the whitening projection viaS−1

W . In
other words, exemplar SVM in such a whitened space is ex-
actly the same as LDA version. Thus, the original and LDA
version of exemplar SVM are viewed in a unified manner in
the proposed framework.

In the followings, we apply exemplar SVM to detection
and classification tasks based on these novel viewpoints.

3. Object detection by ensemble of exemplar
SVMs

We first apply an ensemble of exemplar SVM classi-
fiers to object detection as presented in [17] where exem-
plar SVMs operate on respective object instances to form
an ensemble of classifiers in total. Each exemplar SVM is
trained by using only one positive object image (bounding
box) and plenty of negative images belonging to the other
object categories or background. Thus, as stated in Sec. 2.2,
the parameter C is simply set to C = 1.

3.1. Exemplar SVM for L2-normalized feature vec-
tors

In this task, we assume that feature vectors are normal-
ized in a unit L2 norm, which does not so lack generality
since such normalization is commonly applied in various
features such as HOG features [6].

We also normalizew in a unit L2 norm with accordingly
rescaling the bias ρ;

y =
w>

‖w‖2
z − ρ

‖w‖2
= ŵ>z − ρ̂, (18)

in which classification score y corresponds to distance from
the classification hyperplane. The L2-normalized feature
vectors are located on a unit hypersphere, and thus the
distance y is bounded in −2 ≤ y ≤ 2. Such distance
has geometrically homogeneous meaning across any ex-
emplar SVM classifiers and can be directly comparable;
the larger distance (higher classification score) insists more
confidently that the sample is far from negative samples
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Figure 3. Overlap between two exemplar SVMs.

(classes), that is, belonging to the positive class. As a re-
sult, it is not required to calibrate classification scores of
ensemble ex-SVMs [17].

3.2. Similarity measure for integrating multiple ex-
SVMs

To perform detection task, it is necessary to integrate
multiple ex-SVM classifiers pointing the identical object
category since ex-SVM classifiers of visually similar ob-
ject instances would co-occur at certain object regions in an
image. For that purpose, we define similarity measure be-
tween ex-SVM classifiers. The ex-SVM classifier (18) cuts
a unit hypersphere and we measure overlap between those
cut sub-region on a hypersphere. Cutting planes by two ex-
SVM classifiers are shown in Fig. 3. Along the arc between
two classifier vectors ŵ1 and ŵ2, the overlap (length) u12

is given by

u12 = max[min(θ1, θ12 + θ2)−max(−θ1, θ12 − θ2), 0],
(19)

where as shown in Fig. 3, θ1 and θ2 indicate the spread angle
of respective ex-SVM classifiers (computed by arccos(ρ̂))
and θ12 = arccos(ŵ>1 ŵ2) is the angle between ŵ1 and ŵ2.
Similarity measure is defined by the ratio of the overlap (in-
tersection) compared to the union of two classifier spreads;

Sij =
u12

2θ1 + 2θ2 − u12
. (20)

Note that, in the case that respective exemplar SVMs are
constructed from HOG features of different size (dimen-
sionality), the angle θ12 can not be directly computed by
the inner product due to inconsistency of dimensionality. In
this study, we roughly compute it as the maximum value of
the convolution of ŵ1 and ŵ2

3.
The candidate windows for the target object are detected

via thresholding classification scores by 0. At a window
detected by the i-th ex-SVM classifier, we can accumulate
the scores of overlapped windows detected by the other ex-
SVM classifiers, resulting in the context feature [3] denoted

3The HOG features, consequently classifier vectors, are formulated in
the array of [feature dimension × height × width], on which convolution
can be applied.

by vi ∈ RM where M denotes the number of exemplars in
a category of interest. The final score is computed by using
similarity matrix S (20);

yfin = (si + ε)>vi, (21)

where si is the i-th column vector of S and ε is a bias, set
to ε = 1 in this experiment.

3.3. Experiments on VOC2007 detection dataset

We evaluated performance of exemplar SVM detectors
in the proposed formulation on PASCAL VOC2007 object
detection dataset [8]. The task is to detect objects of 20
categories (car, bike, etc) in 4,952 images, while the detec-
tors are trained on 5,011 images containing 12,608 object
instances (exemplars), each of which works as a positive
sample to produce an ex-SVM detector.

Experimental setup. Note again that the exemplar
SVM classifier in the proposed formulation takes a decision
boundary (y = 0) at the negative support vectors (Fig. 2b)
with rescaling in (18). We employ two types of features,
HOG features [6] and deep-learning (DL) based features [9]
using CAFFE network (fc6 layer) [12] trained on Ima-
geNet dataset. Detectors work in manners of sliding win-
dows for HOG features and selective search [23] for deep-
learning based features; for more details, refer to [9]. For
each exemplar SVM detector, the detected windows that ex-
hibit positive score y > 0 are fed to construct context fea-
ture v mapped into the final score yfin via similarity-based
integration (Sec. 3.2). Finally, non-maximum suppression
is applied to those detected windows with the score yfin.

Performance results. Table 1 shows detection perfor-
mance measured by mean average precision (mAP) rate ac-
cording to VOC evaluation protocol.

As to HOG features, we show at the first row the results
reported in [17] using the original exemplar SVM detection
which are compared with those of the proposed method at
the second row. For reference, we exclude the process to
integrate multiple ex-SVM scores (Sec. 3.2) from our pro-
posed method; that is, the classification score y of each ex-
SVM is directly passed to the final score, yfin = y. The
performance of the degraded method is shown at the third
row. The proposed method produces favorable performance
by effectively integrating ex-SVM scores via the similarity
measure which is computed based only on ex-SVM classi-
fiers, and it is slightly superior to the original one. It should
be noted that for this detection task, the proposed method
regarding classification does not have any parameters to be
tuned; the only one regularization parameter is set to C = 1
from the oc-SVM viewpoint, and neither calibrating classi-
fication score nor empirically constructing similarity matrix
S is required unlike the original ex-SVM detection [17].

As to deep-learning (DL) features, the proposed method
(at the fifth row) again improves performance of the method
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original ex-SVM[17] .208 .480 .077 .143 .131 .397 .411 .052 .116 .186 .111 .031 .447 .394 .169 .112 .226 .170 .369 .300 .227
HOG Ours .290 .513 .097 .165 .103 .356 .461 .059 .127 .214 .104 .100 .478 .398 .185 .100 .262 .145 .182 .377 .236

Ours w/o integration .192 .408 .094 .112 .096 .268 .387 .098 .100 .142 .049 .097 .404 .323 .137 .049 .150 .108 .153 .259 .181
SVM .508 .600 .413 .316 .294 .569 .563 .447 .298 .515 .475 .454 .519 .559 .375 .259 .453 .411 .528 .552 .455

DL Ours .552 .669 .533 .386 .356 .633 .655 .474 .285 .536 .523 .508 .622 .635 .476 .271 .529 .443 .597 .606 .514
Ours w/o integration .494 .617 .390 .292 .261 .501 .612 .332 .180 .397 .282 .375 .561 .551 .342 .187 .428 .275 .513 .557 .407

Table 1. Detection performance on VOC 2007 dataset.

without integrating scores (the sixth row). The proposed
method also significantly outperforms a linear SVM detec-
tor (the fourth row).

4. Feature transformation for classification
We then apply exemplar SVM to transform feature vec-

tors for enhancing discriminative power, which is novel ap-
plication of exemplar SVM to our best knowledge.

4.1. Exemplar SVM as feature transformation

Exemplar SVM provides classifiers specific to respec-
tive samples. Each classifier is designed to maximize the
difference of the target (positive) sample from negatives as
described in Sec. 2.2. Thus, by transforming the sample
so that the classification score is increased, we can obtain
a feature vector of more discriminative power. Such trans-
formation should be regularized based on the manifold on
which the feature vectors are actually distributed. In the
case of L2 normalized features forming a manifold of a unit
hypersphere, we can simply transform a feature vector x by
maximizing the score on the manifold as shown in Fig. 4;

arg max
x̂| ‖x̂‖2=1

w>x̂− b ⇒ x 7→ x̂ =
w

‖w‖2
, (22)

where (w, b) is an exemplar SVM classifier model for x.
The samples that have similar ex-SVM classifiers are trans-
formed into closer points (Fig. 4).

We can also give another interpretation to this transfor-
mation. From the least-square viewpoint in Sec. 2.3, ex-
emplar SVM approximates the target positive sample x by
using the negative samples {ξi}Ni=1. Thus, the reconstructed
vector

∑N
i=1 ᾱiξi shares some sort of patterns with x; for

example, the positive sample and the negatives may share
some background patterns. By subtracting such common
pattern from the target, discriminative feature patterns are
enhanced; the subtracted feature vector, x −

∑N
i=1 ᾱiξi =

w, corresponds to (22) by L2 normalization.

4.2. Mining negative samples

The above transformation requires negative samples of
which categories are different from that of the target sample.

w

transform transform

Figure 4. Feature transformation by exemplar SVM.

Since we deal with unknown test samples whose categories
are not given, the problem is how to draw the negative sam-
ples. We consider three approaches as follows.
Irrelevant dataset. The first approach is to pre-

pare another dataset that is irrelevant to the classification
target. For example, in the case of object classification, we
can utilize scene dataset as a source of negative samples.
For any samples to be classified, negative samples are drawn
from such another dataset.
Smaller C. In this approach, training dataset is re-

garded as a source of negative samples. The feature trans-
formation (22) actually demands support vectors to contain
negative samples of different categories from that of the tar-
get sample. While largerC produces a small number of sup-
port vectors which would be dominated by the samples of
the same category, we can enforceC to be sufficiently small
so that negative samples of different categories likely con-
tribute as support vectors. Let m be the number of samples
in the same category, and C < 1

m works for that purpose.
Two-pass. This approach mines negative samples

from training dataset more aggressively by excluding sim-
ilar categories to that of the target sample. For evaluating
such similarity, we can also utilize exemplar SVM as sim-
ilarity learning described in Sec. 2.3. First of all, exem-
plar SVM with moderately small C is applied to the input
sample and the whole training dataset which we regard as
negatives. Then, the class categories that (most of) support
vectors belong to are excluded. The input feature vector is
subsequently transformed by again applying exemplar SVM
with C = 1 to the training samples of the remaining cate-
gories as negatives. The algorithm is shown in Algorithm 1;



Algorithm 1 : Feature transformation by two-pass ex-
SVM
Input: x: input feature vector (‖x‖2 = 1) to be transformed,
{ξi, ci}Ni=1: training samples with category label c ∈
{1, · · · ,M},
C1, τ : parameters

1: [1st pass] Apply ex-SVM with C = C1 in (8) to x and
{ξi}Ni=1 for producing Lagrangian multipliers {ᾱi}Ni=1.

2: Accumulate ᾱ over categories by hc =
∑
ci=c

ᾱi, ∀c.
3: Sort {hc}Mc=1 in descending order and let {Φc}Mc=1 be the

sorted category indexes, Φc ∈ {1, · · · ,M}, ∀c.
4: Pick up dominant categories {Φc}M̄c=1

where M̄ = min c′, s.t.
∑c′

c=1 hΦc∑M
c=1 hc

≥ τ .

5: Exclude the categories {Φc}M̄c=1 from {1, · · · ,M} and let P
be the index set of the remaining categories.

6: [2nd pass] Apply ex-SVM with C = 1 in (8) to x and
{ξi}ci∈P for producing classifier vectorw.

Output: w
‖w‖2

∈ Rd: transformed feature vector in (22).

parameters C1, τ are empirically set to C1 = 0.2, τ = 0.8
in this study. The first pass exemplar SVM works on com-
puting the similarity from the target sample (Sec. 2.3). This
first screening excludes the categories which are close to
x, possibly containing the correct category of x. Then, the
second exemplar SVM actually transforms the feature vec-
tor on the basis of the remaining (negative) categories.

Note that the latter two approaches operate within the
training dataset, while the first one relies on other datasets.

4.3. Experiments on image classification

We tested the proposed method on image classification
tasks using Caltech-256 [10] for object recognition, CUB-
200-2011 [26] for fine-grained bird classification, MIT-
67 [19] for indoor scene classification.

Experimental setup. We employ Fisher kernel fea-
tures [21] applied to SIFT descriptors [16] transformed by
the method in [14]. Gray-scale SIFT is used in Caltech-
256 and MIT-67, while color (hsv) SIFT [24] is applied
in CUB-200-2011. The proposed method transforms the
Fisher kernel features extracted from an image; for more
details in feature extraction, refer to [14]. Linear SVM is
applied to the transformed feature vectors for classification.
In Caltech-256, we randomly draw 60 training samples per
category and it is repeated three times, while in CUB-200-
2011 and MIT-67 we use the given training/test split.

Experimental results. We analyze three proposed meth-
ods described in Sec. 4.2 basically in comparison to the
original features without transformation.

Irrelevant dataset. Scene dataset (MIT-67) is
utilized as a source of negative samples for object recogni-
tion in Caltech-256 and CUB-200-2011, and vice versa.
As shown in Table 2, performance is not so improved, com-

pared to the original features. This is because characteris-
tics of negative samples would be far away from the target
categories to be classified and the discriminative power of
features would not be enhanced; in this case, object images
might be totally different from scene images. This result
suggests that for effective feature transform, it is required
to draw negative samples from a similar domain to the tar-
get categories.
Smaller C. The regularization parameter C is varied

on the basis of averaged number of samples per category
which is denoted by m̄: C ∈ { 2

m̄ ,
1
m̄ , · · · ,

1
32m̄}. Note that

the number of support vectors is greater than 1
C . Thus, at

smaller C, the support vectors contain negative samples of
different categories. Table 4a shows that as expected, the
smaller C improves performance; C = 1

8m̄ produces favor-
able performance in these datasets. In contrast, the larger C
degrades performance which is inferior even to the original
features since the support vectors are dominated by the pos-
itive samples of the same category. Discriminative power
is enhanced by comparing to counter-category samples (so-
called negative samples). This method, however, has an is-
sue regarding computation time; for smaller C producing
larger number of support vectors, the computation time4 to
solve QP (8) becomes larger as shown in Table 4b.
Two-pass. In this method, the first-pass ex-SVM

mines similar samples and categories to the target sample
which are subsequently excluded in the second pass. So de-
tected categories are expected to contain the true category of
the target sample for successfully enhancing discriminativ-
ity power by the second ex-SVM. Fig. 5 shows quality of the
detected categories by first-pass ex-SVM in terms of preci-
sion and recall on the training set by varying a threshold
parameter τ on Caltech-256. As expected, performance
is improved at higher recall rate where the true category
of the target positive sample is likely to be excluded in the
second pass, contributing to improve discriminative power.
Thus, we can say that higher recall is preferable compared
to higher precision for this feature transformation. Since
the first-pass ex-SVM provides similarities from the target
sample to the categories, we can also perform classifica-
tion based on the similarity in a manner similar to k-NN.
The performance results in Table 3a show that only the first
pass is not enough for achieving higher classification per-
formance; performance by similarity-based classification is
inferior even to the original ones. The second-pass ex-
SVM significantly improves it, producing favorable perfor-
mance. In addition, the computation time for two-pass
ex-SVM is quite small as shown in Table 3b; it is faster
than smaller C method of C = 1

8m̄ .
As a result, for feature transformation, the method of

two pass ex-SVM is superior to the other two methods
in terms of classification accuracy and computation time.

4It is measured on Xeon 3.4GHz PC with Matlab and Mex-C.



original irrelevant
feature [14] dataset

Caltech-256 57.4±0.4 57.3±0.2 (MIT-67)
CUB-200-2011 28.7 28.9 (MIT-67)
MIT-67 63.4 64.0 (Caltech-256)

Table 2. Classification performance by irrelevant
dataset approach. The dataset from which negative sam-
ples are drawn is shown in the parentheses.

two Similarity
pass based k-NN

Caltech-256 58.3±0.4 50.2±0.4

CUB-200-2011 30.0 16.6
MIT-67 64.8 58.0

(a) Accuracy (%)

two
pass

Caltech-256 4.83
CUB-200-2011 1.39
MIT-67 1.92

(b) Time per sample (msec)

Table 3. Classification performance and computation time by two-pass
approach.

C = 1
m̄
× 2 1 1

2
1
4

1
8

1
16

1
32

Caltech-256 (m̄ = 60) 49.9±0.2 53.8±0.4 56.2±0.4 57.3±0.4 57.7±0.4 57.5±0.4 57.6±0.4

CUB-200-2011 (m̄ = 30) 26.7 27.9 29.1 29.4 29.9 29.8 29.3
MIT-67 (m̄ = 80) 54.8 59.3 62.1 64.4 64.3 64.2 64.2

(a) Accuracy (%)

C = 1
m̄
× 2 1 1

2
1
4

1
8

1
16

1
32

Caltech-256 (m̄ = 60) 1.56 2.11 3.34 5.98 11.75 42.82 65.77
CUB-200-2011 (m̄ = 30) 0.49 0.57 0.74 1.18 2.10 3.95 7.78
MIT-67 (m̄ = 80) 0.76 0.96 1.50 2.75 5.15 9.43 40.26

(b) Time per sample (msec)

Table 4. Classification performance and computation time by smaller C approach. m̄ indicates the averaged number of sample per
category.
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Figure 5. Precision-recall curve for measuring the quality of the
first-pass exemplar SVM on Caltech-256. Performance is shown
in pseudo colors. This figure is best viewed in color.

5. Conclusion
We have presented two novel viewpoints toward exem-

plar SVM [17] in addition to the original definition; one
is related to one-class SVM and the other is based on
least-square reconstruction. From these novel viewpoints,
regularization parameters of exemplar SVM are reduced
into only one with clear intuition, which frees us from ex-
haustively tuning parameters. Geometrical interpretation is
given not only to ex-SVM classifier but also to Lagrangian
multipliers which correspond to support vector coefficients.
These viewpoints also lead to a novel framework of ex-
SVM detection as well as to a novel feature transformation
method. In the experiments on VOC2007 detection and im-

age classification using three datasets, the proposed meth-
ods exhibit favorable performance.

In particular, the proposed feature transformation
method is so general that our future work includes to ap-
ply it to various types of features.
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