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Abstract

Structural support vector machines (SSVMs) are
amongst the best performing methods for structured com-
puter vision tasks, such as semantic image segmentation or
human pose estimation. Training SSVMs, however, is com-
putationally costly, because it requires repeated calls to a
structured prediction subroutine (called max-oracle), which
has to solve an optimization problem itself, e.g. a graph cut.

In this work, we introduce a new algorithm for SSVM
training that is more efficient than earlier techniques when
the max-oracle is computationally expensive, as it is fre-
quently the case in computer vision tasks. The main idea
is to (i) combine the recent stochastic Block-Coordinate
Frank-Wolfe algorithm with efficient hyperplane caching,
and (ii) use an automatic selection rule for deciding
whether to call the exact max-oracle or to rely on an ap-
proximate one based on the cached hyperplanes.

We show experimentally that this strategy leads to faster
convergence towards the optimum with respect to the num-
ber of required oracle calls, and that this also translates
into faster convergence with respect to the total runtime
when the max-oracle is slow compared to the other steps
of the algorithm. A C++ implementation is provided at
http://www.ist.ac.at/˜vnk.

1. Introduction
Many computer vision problems have a natural formu-

lation as structured prediction tasks: given an input image
the goal is to predict a structured output object, for exam-
ple a segmentation mask or a human pose. Structural sup-
port vector machines (SSVMs) [28, 30], are currently one
of the most popular methods for learning models that can
perform this task from training data. In contrast to ordinary
support vector machines (SVMs) [9], which only predict
single values, e.g. a class label, SSVMs are designed such
that, in principle, they can predict arbitrary structured ob-
jects. However, this flexibility comes at a cost: training an
SSVM requires solving a more difficult optimization prob-
lem than training an ordinary SVM. In particular, SSVM

training requires repeated runs of the structured prediction
step (the so called max-oracle) across the training set. Each
of these steps is an optimization problem itself, e.g. finding
the minimum energy labeling of a graph, and often compu-
tationally costly. In fact, the more challenging the problem
is, the more the max-oracle calls become a computational
bottleneck. This is also a major factor why SSVMs are typ-
ically only used for problems with small and medium-sized
training sets, not for large scale training as it is common
these days, for example, in object categorization [10].

In this work, we introduce a new variant of the Frank-
Wolfe algorithm that is specifically designed for train-
ing SSVMs in situations where the calls to the max-
oracle are the computational bottleneck. It extends the
recently proposed block-coordinate Frank-Wolfe (BCFW)
algorithm [20] by introducing a caching mechanism that
keeps the results of earlier oracle calls in memory. In each
step of the optimization, the method decides whether to call
the exact max-oracle, or to reuse one of the results from the
cache. The first option might allow the algorithm to make a
larger steps towards the optimum, but it is slow. The second
option will make smaller steps, but this might be justified,
since every step will be much faster. Overall, a trade-off be-
tween both options will be optimal, and a second contribu-
tion of the manuscript is a geometrically motivated criterion
for dynamically deciding at any time during the runtime of
the algorithm, which choice is more promising.

We report on experiments on four different datasets that
reflect a range of structured prediction scenarios: multiclass
classification, sequence labeling, figure-ground segmenta-
tion and semantic image segmentation.

2. Structural Support Vector Machines

The task of structured prediction is to predict structured
objects, y ∈ Y , for given inputs, x ∈ X . Structural
support vector machines (SSVMs) [28, 30] offer a princi-
pled way for learning a structured prediction function, h :
X → Y , from training data in a maximum margin frame-
work. We parameterize h(x) = arg maxy∈Y〈w, φ(x, y)〉,
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where φ : X × Y → Rd is a joint feature function of
inputs and outputs, and 〈·, ·〉 denotes the inner product in
Rd. The weight vector, w, is learned from a training set,
{(x1, y1), . . . , (xn, yn)}, by solving the following convex
optimization problem:

min
w

λ

2
‖w‖2 +

n∑
i=1

Hi(w), (1)

where λ ≥ 0 is a regularization parameter. Hi(w) is the
(scaled) structured hinge loss that is defined as

Hi(w)=
1

n
max
y∈Y

{
∆(yi, y)−〈w, φ(xi, yi)−φ(xi, y)〉

}
, (2)

where ∆ : Y × Y → R is a task-specific loss function, for
example the Hamming loss for image segmentation tasks.

Computing the value of Hi(w), or the label that realizes
this value, requires solving an optimization problem over
the label set. We refer to the procedure to do so as the max-
oracle, or just oracle. Other names for this in the literature
are loss-augmented inference, or just the arg max step. It
depends on the problem at hand how the max-oracle is im-
plemented. We provide details of three choices and their
properties in the extended technical report [26].

Structural SVMs have proved useful for numerous com-
plex computer vision tasks, including human pose estima-
tion [17, 31], object detection [2], semantic image segmen-
tation [1, 23, 27], scene reconstruction [14, 25] and track-
ing [15, 21]. In this work, we concentrate not on the ques-
tion if SSVMs learn better predictors than other methods,
but we study Equation (1) from the point of a challeng-
ing optimization problem. We are interested in the ques-
tion how fast for given data and parameters we can find the
optimal, or a close-to-optimal, solution vector w. This is
a question of high practical relevance, since training struc-
tured SVMs is known to be computationally costly, espe-
cially in a computer vision context where the output set, Y ,
is large and the max-oracle requires solving a combinatoric
optimization problem [23].

2.1. Related Work

Many algorithms have been proposed to solve the opti-
mization problem (1) or equivalent formulations. In [28]
and [30], where the problem was originally introduced, the
authors derive a quadratic program (QP) that is equivalent
to (1) but resembles the SVM optimization problem with
slack variables and a large number of linear constraints.

The QP can be solved by a cutting-plane algorithm that
alternates between calling the max-oracle once for each
training example and solving a QP with a subset of con-
straints (cutting planes) obtained from the oracle. The algo-
rithm was proved to reach a solution ε-close to the optimal
one within O( 1

ε2 ) step, i.e. O( nε2 ) calls to the max-oracle.

Joachims et al. improved this bound in [18] by introducing
the one-slack formulation. It is also based on finding cutting
planes, but keeps their number much smaller, achieving an
improved convergence rate ofO(nε ). The same convergence
rate can also be achieved using bundle methods [29].

Ratliff et al. observed in [24] that one can also apply the
subgradient method directly to the objective (1), which also
allows for stochastic and online training. A drawback of this
is that the speed of convergence depends crucially on the
choice of a learning rate, which makes subgradient-based
SSVM training often less appealing for practical tasks.

The Frank-Wolfe algorithm (FW) [12] is an elegant al-
ternative: it resembles subgradient methods in the simplic-
ity of its updates, but does not require a manual selection
of the step size. Recently, Lacoste-Julien et al. introduced
a block-coordinate variant of the Frank-Wolfe algorithm
(BCFW) [20]. It achieves higher efficiency than the orig-
inal FW algorithm by exploiting the fact that the SSVM ob-
jective can be decomposed additively into n terms, each of
which is structured. Experiments in [20] show a significant
speedup of BCFW compared to the original FW algorithm
as well as the previously proposed techniques.

Almost simultaneously with [20], Branson et al. [6] pro-
posed an “SVM-IS” method. It assumes an application-
specific procedure called “ImportanceSample” that re-
turns K solutions rather than 1 (the first of which is the
result of the max-oracle). For K = 1 the method appears
to be equivalent to the BCFW method in [20], except for a
slight variation in the formulation of the dual problem.

BCFW can be considered the current state-of-the-art for
SSVM training. However, in the next section we show that
it can be significantly improved upon for computer vision
tasks, in which the training time is dominated by calls to
the max-oracle.

Besides the above techniques that use the max-oracle
purely as a black box, several other approaches for acceler-
ating SSVM training have been developed, e.g., using dual
decomposing [19], restricting the search space to tractable
subclasses [11], solving relaxed or smoothed optimization
problems [16, 22], or exploiting the similarity between so-
lutions [7]. Such techniques can also yield a significant
speedup, but their applicability typically depends on the
concrete form of the max-oracle.

3. Efficient SSVM Training
In this section we introduce our main contribution, the

multi-plane block-coordinate Frank-Wolfe (MP-BCFW) al-
gorithm for SSVM training. Because it builds on top of
the FW and BCFW methods, we start by giving a more de-
tailed explanation of the working mechanisms of these two
algorithms. Afterwards, we highlight the improvements we
make to tackle the situation when the max-oracle is compu-
tationally very costly.
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Figure 1. Frank-Wolfe algorithm for minimizing λ
2
||w||2 +H(w).

The vector ϕ specifies the current linear lower bound on H . One
iteration involves three steps: (i) Compute the vector w that mini-
mizes λ

2
||w||2 + 〈ϕ, [w 1]〉. (ii) Obtain a new linear bound ϕ̂ on

H(·) by computing a subgradient ofH atw. (iii) Compute a linear
interpolation ϕ′ between ϕ and ϕ̂ that maximizes F(ϕ′), and set
ϕ← ϕ′.

First, we rewrite the structured Hinge loss term (2) more
compactly as

Hi(w) = max
y∈Y
〈ϕiy, [w 1]〉, (3)

where 〈 ·, · 〉 denotes the inner product in Rd+1, and [w 1]
is the concatenation of w with a single 1 entry. For a vector
ϕ ∈ Rd+1 we denote its first d components as ϕ? ∈ Rd and
its last component as ϕ◦ ∈ R. The data vector ϕiy in (3)
for i = 1, . . . , n and y ∈ Y is given by ϕiy? = 1

n (φ(xi, y)−
φ(xi, yi)) and ϕiy◦ = 1

n∆(yi, y). Note that 〈ϕiy, [w 1]〉 =

〈ϕiy? , w〉+ ϕiy◦ .

3.1. Frank-Wolfe algorithm

The Frank-Wolfe (FW) algorithm solves the SSVM
training problem in its dual form. Writing H(w) =∑n
i=1Hi(w) and introducing concatenated vectors ϕȳ =

ϕ(y1,...,yn) =
∑n
i=1 ϕ

iyi , the primal problem becomes

min
w

λ

2
||w||2+H(w), for H(w) = max

ȳ∈Y
〈ϕȳ, [w 1]〉, (4)

for Y = Y × · · · × Y . Note that evaluating H(w) for a
given w requires n calls to the max-oracle, one for each of
the terms H1(w), . . . ,Hn(w).

The FW algorithm maintains a (hyper)plane specified by
a vector ϕ ∈ Rd+1 that corresponds to a lower bound on
H(·): 〈ϕ, [w 1]〉 ≤ H(w) for all w ∈ Rd. Such a plane
exists, because H is convex. In fact, any ϕȳ for ȳ ∈ Y has
this property, as well as any convex combination of such
planes, ϕ =

∑
ȳ∈Y αȳϕ

ȳ for
∑
ȳ∈Y αȳ = 1 and αȳ ≥ 0.

We call vectors ϕ of this form feasible.
Any feasible ϕ = [ϕ? ϕ◦] provides a lower bound on (4),

which we can evaluate analytically

F(ϕ) = min
w

{λ
2
||w||2 + 〈ϕ, [w 1]〉

}
= − 1

2λ
||ϕ?||2 +ϕ◦.

(5)
Maximizing F(ϕ) over all feasible vectors ϕ yields the

tightest possible bound. This maximization problem is the

Algorithm 1 Frank-Wolfe algorithm for the dual of (4)
1: set ϕ← ϕȳ for some ȳ ∈ Y
2: repeat
3: compute w ← arg minw

λ
2
||w||2 + 〈ϕ, [w 1]〉;

the solution is given by w = − 1
λ
ϕ?

4: call oracle for vector w: compute ϕ̂← arg max
ϕȳ :ȳ∈Y

〈ϕȳ, [w 1]〉

5: compute γ ← arg maxγ∈[0,1] F((1−γ)ϕ+γϕ̂) as follows:

set γ ← 〈ϕ?−ϕ̂?,ϕ?〉−λ(ϕ◦−ϕ̂◦)
||ϕ?−ϕ̂?||2

and clip γ to [0, 1]

set ϕ← (1− γ)ϕ+ γϕ̂
6: until some stopping criterion

dual to (4). The Frank-Wolfe algorithm is iterative proce-
dure for maximizing F(ϕ). It is stated in pseudo code in
Algorithm 1, and it is illustrated in Figure 1. Each itera-
tion monotonically increases F(ϕ) (unless the maximum is
reached), and the algorithm converges to an optimal solu-
tion with the rate O( 1

ε ) with respect to the number of itera-
tions, i.e. O(nε ) oracle calls [20].

3.2. Block-coordinate Frank-Wolfe algorithm

The block-coordinate Frank-Wolfe algorithm [20] also
solves the dual of problem (1), but it improves over the
FW algorithm by making use of the additive structure of
the objective (4). Instead of keeping a single plane, ϕ, it
maintains n planes, ϕ1, . . . , ϕn, such that the i-th plane is a
lower bound on Hi: 〈ϕi, [w 1]〉 ≤ Hi(w) for all w ∈ Rd.
Each such plane is obtained as a convex combination of
the planes that define Hi(·), i.e. ϕi =

∑
y∈Y αiyϕ

yi where∑
y∈Y αiy = 1 and αiy ≥ 0.
We now call a vector (ϕ1, . . . , ϕn) feasible if each ϕi

is as above. The sum ϕ =
∑n
i=1 ϕ

i then defines a plane
that lower bounds H(w) =

∑n
i=1Hi(w), i.e. 〈ϕ, [w 1]〉 ≤

H(w) for allw ∈ Rd. Therefore,F(ϕ), as defined by (5), is
again a lower bound on problem (1), and the goal is again to
maximize this bound over all feasible vectors (ϕ1, . . . , ϕn).

BCFW does so by a block-coordinate strategy. It picks
an index i ∈ [n] = {1, . . . , n} and updates the compo-
nent ϕi while keeping all other components fixed. During
this step the terms Hj(w) for j 6= i are approximated by
linear functions 〈ϕj , [w 1]〉, and the algorithm tries to find a
new linear approximation forHi(·) that gives a larger bound
F(
∑n
j=1 ϕ

j). Pseudo code for BCFW is given in Algo-
rithm 2, and it is illustrated in Figure 2.

3.3. Multi-Plane Block-Coordinate Frank-Wolfe

It has been shown in [20] that for training SSVMs,
BCFW needs much fewer passes through the training data
than the FW algorithm as well as earlier approaches, such as
the cutting plane and stochastic subgradient methods. How-
ever, it still has one suboptimal feature that can be improved
upon: the computation efforts in each BCFW step are very
unbalanced. For each oracle call (line 6 in Alg. 2) there is



Algorithm 2 Block-coordinate Frank-Wolfe (BCFW)
algorithm for the dual of (1)

1: for each i ∈ [n] set ϕi ← ϕiy for some y ∈ Y
2: set ϕ =

∑n
i=1 ϕ

i

3: repeat
4: pick i ∈ [n], e.g. uniformly at random
5: compute w ← arg minw

λ
2
||w||2 + 〈ϕ, [w 1]〉

the solution is given by w = − 1
λ
ϕ?

6: call i-th oracle for vector w: ϕ̂i ← arg max
ϕiy :y∈Y

〈ϕiy, [w 1]〉

7: compute γ ← arg maxγ∈[0,1] F(ϕ−ϕi+(1−γ)ϕi+γϕ̂i ):

set γ ← 〈ϕi
?−ϕ̂

i
?,ϕ?〉−λ(ϕi

◦−ϕ̂
i
◦)

||ϕi
?−ϕ̂i

?||2
and clip γ to [0, 1]

8: set ϕiold ← ϕi, ϕi ← (1−γ)ϕi+γϕ̂i, ϕ← ϕ+ϕi−ϕiold
9: until some stopping criterion

only Θ(d) amount of additional work (lines 5,7,8), and this
is often negligible compared to the time taken by the ora-
cle. We could easily afford to do more work per oracle call
without significantly changing the running time of one iter-
ation. Our goal is therefore to exploit this extra freedom to
accelerate convergence, thereby decreasing the number of
required oracle calls and the total runtime of the algorithm.

Our main insight is that BCFW acts wastefully by dis-
carding the plane ϕ̂i after completing the iteration for the
term Hi, even though it required an expensive call to the
max-oracle to obtain ϕ̂i. We propose to retain some of these
planes, maintaining a working setWi for each i = 1, . . . , n.
We proceed similarly to [18], where a working set was used
in a cutting-plane framework. Whenever the oracle for Hi

is called, the obtained plane ϕ̂i is added toWi. Planes are
removed again from Wi after a certain time, unless in the
mean time they have become active (see below). Conse-
quently, at any iteration the algorithm has access to multiple
planes instead of just one, which is why we name the pro-
posed algorithm multi-plane block-coordinate Frank-Wolfe
(MP-BCFW).

The working set, Wi, allows us to define an alternative
mechanism for increasing the objective value that does not
require a call to the costly max-oracle. We define an ap-
proximation H̃i(w) of Hi(w) by

H̃i(w) = max
ϕ̃i∈Wi

〈ϕ̃i, [w 1]〉. (6)

Note that H̃i(w) ≤ Hi(w) for all w ∈ Rd, since the max-
imization is performed over a smaller set. For any i ∈ [n],
we can perform block updates like in BCFW, but with the
term H̃i instead of Hi, i.e. in step 6 of Algorithm 2 we set
ϕ̂i ← arg max

ϕ̃i∈Wi

〈ϕ̃i, [w 1]〉. Such approximate oracle steps

will increase F(ϕ), but potentially less so than a BCFW
update using the exact expression.1

1Note that the function 〈ϕi, [w 1]〉 may not be a lower bound on
H̃(w): the plane ϕi is a convex combination of planes {ϕiy : y ∈ Y},
but some of these planes may have been removed from the working set Wi.

Algorithm 3 Multi-Plane Block-Coordinate Frank-Wolfe
(MP-BCFW) algorithm. Parameters: N,M, T .

1: for each i ∈ [n] set ϕi ← ϕiy for some y ∈ Y ,
2: set ϕ =

∑n
i=1 ϕ

i

3: if N > 0 then Wi = {ϕi} else Wi = ∅ for each i ∈ [n]
4: repeat until some stopping criterion
5: do one pass through i ∈ [n] in random order,

for each i do the following:
run BCFW update using original term Hi(w)
add obtained vector ϕ̂i toWi

if |Wi|>N then remove longest inactive plane fromWi

6: do up to M passes (see text) through i∈ [n] in random order,
for each i do the following:

run BCFW update with term H̃i(w)= max
ϕ̃i∈Wi

〈ϕ̃i, [w 1]〉

remove planes fromWi that have not been active during
the last T outer iterations

7: end repeat

We propose to interleave the approximate updates steps
with exact updates. The order of operations in our current
implementation is shown in Algorithm 3. We refer to one
pass through the data in lines 5 and 6 as an exact and an ap-
proximate pass respectively, and to steps 5-6 as an (outer)
iteration. Thus, each iteration contains 1 exact pass and up
to M approximate passes. The parameter N bounds the
number of stored planes per term: |Wi| ≤ N for each i. In
this algorithm a plane is considered active at a given mo-
ment if it is returned as optimal by either an exact or an
approximate oracle call.

The complexity of one approximate update in step 6 is
O(Nd), therefore the algorithm performs O(MNd) addi-
tional work per each oracle call. For M = N = 0, MP-
BCFW reduces to the classical BCFW algorithm. Since
MP-BCFW in particular performs all steps that BCFW
does, it inherits all convergence guarantees from the ear-
lier algorithm, such as a convergence rate of O( 1

ε ) towards
the optimum, as well as the guarantee of convergence even
when the max-oracle can solve the problem only approxi-
mately (see [20] for details). However, as we will show in
Section 4, MP-BCFW gets more “work done” per iteration
and therefore converges faster with respect to the number of
max-oracle calls.

3.4. Automatic Parameter Selection

The optimal number of planes to keep per term as well
as the optimal number of efficient approximate passes to
run depends on several factors, such as the number of sup-
port vectors and how far the current solution still is from the
optimal one. Therefore, we propose not to set these parame-

However, this property is not required for the correctness of the method.
Indeed, it follows from the construction that in Algorithm 3 the vector ϕi

is a always convex combination of planes {ϕiy : y ∈ Y} for each i,
and each step is guaranteed not to decrease the bound F(

∑n
i=1 ϕi). As a

consequence, the convergence properties proven in [20] still hold.
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Figure 2. Block-coordinate Frank-Wolfe algorithm for minimizing λ
2
||w||2 +

∑n
i=1 Hi(w) with n = 3. Each vector ϕi specifies the

current linear lower bound on Hi. One iteration for term i = 2 is similar to the classical Frank-Wolfe algorithm, except that the terms H1

and H3 are approximated by linear lower bounds ϕ1 and ϕ3, respectively, which are kept fixed during this step.

ters to fixed values but to adapt them dynamically over time
in a data-dependent way. The first criterion described below
is fairly standard [18], but the second criterion is specific to
MP-BCFW and forms a second contribution of this work.

Working set size. We observe that the working set is
bounded not only by its upper bound parameter, N , but
also by the mechanism that automatically removes inactive
planes. Since the second effect is more interpretable, we
suggest to set N to a large value, and rely on the parameter
T to control the working set size. In effect, the actual num-
ber of planes is adjusted in a data-dependent way for each
training instance. In particular, for terms with few relevant
planes (support vectors) the working set will be small. A
side effect of this is an acceleration of the algorithm, since
the runtime of the approximate oracle is proportional to the
actual number of planes in their working set.

Number of approximate passes. We set the maximal
number of approximate passes per iteration, M , to a large
value and rely on the following geometrically motivated cri-
terion instead. After each approximate pass we compute
two quantities: 1) the increase in F(ϕ) per time unit (i.e.
the difference of function values divided by the runtime)
of the most recent approximate pass, and 2) the increase in
F(ϕ) per unit time of the complete sequence of steps since
starting the current iteration. If the former value is smaller
than the latter, we stop making approximate passes and start
a new iteration with an exact pass.

The above criterion can be understood as an extrapola-
tion of the recent behavior of the runtime-vs-function value
graph into the future, see Figure 3. If the slope of the last
segment is higher than the slope of the current iteration so
far, then the expected increase from another approximate
pass is high enough to justify its cost. Otherwise, it is more
promising to start a new iteration.

3.5. Weighted averaging of iterates

The convergence speed of stochastic optimization meth-
ods can often be improved further by taking weighted av-
erages of iterates [3]. In this work, we use the same av-
eraging scheme as [20]: writing ϕ(k) for the vector pro-

dual
objective

time

exact
pass

approx.
passes

continue
iteration

time

dual
objective

start new
iteration

exact
pass

approx.
passes

Figure 3. Geometric criterion for number of approximate passes.
After each approximate pass, we compare the relative progress (in-
crease in objective per time = slope of the last black line segment)
to the relative progress of the complete iteration so far (slope of
the dashed line). If the former is higher (left), we make another
approximate pass. Otherwise, we start a new iteration (right).

duced after the k-th oracle call in Algorithm 2 (BCFW), the
k-th averaged vector is ϕ̄(k) = 2

k(k+1)

∑k
t=1 tϕ

(t). It can

also be computed incrementally via ϕ̄(k+1) = k
k+2 ϕ̄

(k) +
2
k+2ϕ

(k+1) for k ≥ 1. While this step has no impact on the
dual objective, several studies have shown that the iterates
w̄(k) = − 1

λ ϕ̄
(k)
? typically converge to the optimum signifi-

cantly faster than the iterates w(k) = − 1
λϕ

(k)
? . This is also

confirmed in our experiments.
For inclusion into MP-BCFW we extended the above

scheme by maintaining two vectors, ϕ̄(k) and ¯̄ϕ(k′). They
are updated after every exact and after every approximate
oracle call, respectively, using the above formula. When we
need to extract a solution, we compute the interpolation be-
tween ϕ̄(k) and ¯̄ϕ(k′) that gives the best dual objective score.
By this construction we overcome the problem that the two
types of oracle calls have quite different characteristics, and
thus may require different weights.

We refer to the averaged variants of BCFW and MP-
BCFW as BCFW-avg and MP-BCFW-avg, respectively.

4. Experiments
We implemented the MP-BCFW algorithm in C++2 and

analyzed its effectiveness by performing experiments for
four different setting: multi-class classification, sequence
labeling, figure-ground segmentation and semantic image

2The source code is available at http://www.ist.ac.at/˜vnk

http://www.ist.ac.at/~vnk
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Figure 4. Oracle convergence on the four benchmark datasets. Shaded areas indicate minimum and maximum values over 10 repeats. In all
cases, the multi-plane algorithms, MP-BCFW and MP-BCFW-avg, require fewer iterations to reach high quality solutions than the single
plane variants, BCFW and BCFW-avg.

segmentation. The first two rely on generic datasets that
were used previously to benchmark SSVM training (multi-
class classification on the USPS dataset3 and sequence
labeling on the OCR dataset4). The third task (figure-
ground segmentation on part of the HorseSeg dataset5) and
the fourth (multiclass semantic image segmentation on the
Stanford background dataset6) show a typical feature of
computer vision tasks: the max-oracle is computationally
costly, much more so than in the previous two cases, which
results in a strong computational bottleneck for training.
In the case of multiclass segmentation the max-oracle is
even NP-hard and can be solved only approximately, an-
other common property for computer vision problems. Ex-
act details of dataset characteristics, feature representations
and implementation of the oracles for the four datasets are
provided in the technical report [26].

We focus on comparing MP-BCFW with BCFW (with
and without averaging), since in [20] it has already be
shown that BCFW offers a substantial improvements over
earlier algorithms, in particular classical FW [12], cutting
plane training [18], exponentiated gradient [8] and stochas-
tic subgradient training [24]. Since all algorithms solve the

3http://www-i6.informatik.rwth-aachen.de/˜keysers/
usps.html

4http://www.seas.upenn.edu/˜taskar/ocr/
5http://www.ist.ac.at/˜akolesnikov/HDSeg/
6http://dags.stanford.edu/projects/scenedataset.html

same convex optimization problem and will ultimately ar-
rive at the same solution, we are only interested in the con-
vergence speed, not in the error rates of the resulting predic-
tors. This allows us to adopt an easy experimental setup in
which we use all available training data for learning and do
not have to set aside data for performing model selection.
In line with earlier work, we regularize using λ = 1/n.

To be comparable to earlier work, in particular [20], we
report the progress of the optimization in terms of the pri-
mal suboptimality. This value is the difference between the
current value of the primal objective and the highest value
of the dual objective (i.e. the lower bound) that we observed
during any of our experiments for any of the methods. As
such, the primal suboptimality is a conservative estimate
of how far a current solution is from the (unknown) op-
timal one. For the Stanford dataset evaluating the primal
objective exactly is intractable, so the reported values are
only approximate. As a consequence, the (approximate)
primal suboptimality can become negative for this dataset,
in which case we interrupt the logarithmic plots. Results for
other quality measures, in particular the dual suboptimality
and duality gap are reported in the technical report [26].

We visualize the results in two coordinate frames: i) with
respect to the number of iterations, and ii) with respect to
the actual runtime. The first quantity, which we refer to
as oracle convergence, measures how efficiently the algo-
rithm uses the statistical information that is present in the

http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://www.seas.upenn.edu/~taskar/ocr/
http://www.ist.ac.at/~akolesnikov/HDSeg/
http://dags.stanford.edu/projects/scenedataset.html
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Figure 5. Runtime convergence on the four benchmark datasets. Shaded areas indicate minimum and maximum values over 10 repeats.
When the max-oracle is fast (USPS and OCR), the multi-plane algorithms (MP-BCFW, MP-BCFW-avg) behave similarly to their single-
plane counterparts (BCFW, BCFW-avg) due to the automatic parameter adjustment. When the max-oracle is computationally costly
(HorseSeg, Stanford) the multi-plane variants converge substantially faster.

training examples. It is independent of the implementation
and therefore comparable between publications. The sec-
ond value, called runtime convergence, is of practical inter-
est, because it reflects the computational resources required
to achieve a certain solution quality. However, it depends
on the concrete implementation and computing hardware.7

To nevertheless obtain fair runtime comparisons, we use the
same code base for all methods, making use of the fact that
BCFW can be recovered from MP-BCFW with minimal
overhead by deactivating the working sets and approximate
passes (N = 0, M = 0). For MP-BCFW we rely on the
automatic parameter selection mechanism and set T = 10,
N = 1000, M = 1000, where the latter two just act as high
upper bounds that do not influence the system’s behaviour.

4.1. Results

Figure 4 shows the oracle convergence results for all
datasets. One can see that within the same number of it-
erations (and thereby calls to the max-oracle), MP-BCFW
always achieves lower primal suboptimality than BCFW.
Similarly, MP-BCFW-avg improves over BCFW-avg.

This effect is stronger for OCR, HorseSeg and Stanford
than for USPS, which makes sense, since the latter dataset
has a very small label space (|Y| = 10), so the number of
support vectors per example is small, which limits the ben-

7All experiments were done on a PC with 3.6GHz Intel Core i7 CPU.

efits of having access to more than one plane. The graph
labeling tasks OCR, HorseSeg and Stanford have a larger
label spaces, so one can expect more support vectors to con-
tribute to the score. Reusing planes from previous iterations
can be expected to have a beneficial effect.

Figure 5 illustrates the runtime convergence, i.e. the val-
ues on the vertical axis are identical to Figure 4, but the hor-
izontal axis shows the actual runtime instead of the number
of iterations. One can see that for the USPS dataset, the
better oracle convergence did not translate to actually faster
convergence, and for OCR, the difference between single-
plane and multi-plane methods is small.

The situation is different for the HorseSeg and Stanford
datasets, which are more typical computer vision tasks. For
them, MP-BCFW and MP-BCFW-avg converge substan-
tially faster than BCFW and BCFW-avg. The differences
can be explained by the characteristics of the max-oracle
in the different optimization problems: for USPS and OCR
these are efficient and not do not form major computational
bottlenecks. For USPS, the max-oracle requires only com-
puting ten inner products and identifying their maximum.
This takes only a few microseconds on modern hardware.
Overall, the BCFW algorithm spends approximately 15% of
its total runtime on oracle calls. For OCR, the max-oracle is
implemented efficiently via Dynamic Programming (Viterbi
algorithm), which takes approximate 50µs on our hardware.
Overall, oracle calls make up for approximately 70% of
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Figure 6. Automatic parameter selection. The size of the working set (top) and the number of approximate passes per iteration (bottom)
are adjusted in a data- and runtime-dependent way. See Section 4.2 for details.

BCFW’s runtime. In both settings, the ratio of time spent
for the oracle calls and the time spent elsewhere is not high
enough to justify frequent use of the approximate oracle.

Note, however, that even for USPS, MP-BCFW is also
not significantly slower than BCFW, either. This indicates
that the automatic parameter selection does its job as in-
tended: if the overhead of a large working set and many ap-
proximate passes would be larger than the benefit they offer,
the selection rule falls back to the established (and efficient)
baseline behavior.

For the other two datasets, the max-oracle calls are
strong computational bottlenecks. For HorseSeg, each or-
acle call consists of minimizing a submodular energy func-
tion by means of solving a maximum flow problem [4]. For
the Stanford dataset, the oracle consists of minimizing a
Potts-type energy function for which we rely on the efficient
preprocessing from [13] followed by the approximation al-
gorithm from [5]. Even with optimized implementations
the oracle calls take 1 to 5 milliseconds. As a consequence,
BCFW spends almost 99% of the total training time on or-
acle calls. With MP-BCFW, the fraction drops to less than
25% because the parameter selection mechanism decides
that the time it takes to make one exact oracle call is often
spent better for making several approximate oracle calls.

4.2. Automatic parameter selection

Figure 6 illustrates the dynamic behavior of the param-
eter selection for MP-BCFW in more detail. The first row
shows the average size of the working set per term over the
course of the optimization, the second row shows the num-
ber of approximate passes per iteration.

One can see that for USPS the number of planes and it-
erations remain small through the runtime of the algorithm,
making MP-BCFW behave almost as BCFW. For OCR, the
algorithm initially identifies several relevant planes, but this
number is reduced for later iterations. The number of ap-
proximate passes per iteration ranges between 10 to 20.

HorseSeg shows a similar pattern but in more extreme
form. After an initial exploration phase the number of rel-
evant planes stabilizes at a low value, while the number of
approximate passes grows quickly to several hundred. For
Stanford, the working set grows steadily to reach a stable
state, but the number of approximate passes grows slowly
during the course of the optimization.

In summary, one can see that the automatic parameter
selection shows a highly dynamic behaviour. It allows MP-
BCFW to adapt to the complexity of the objective function
as well as to dynamic properties of the optimization, such
as how far from the objective the current solution is.

5. Summary and Conclusion
We have presented MP-BCFW, a new algorithm for

training structured SVMs that is specifically designed for
the situation of computationally costly max-oracles, as they
are common in computer vision tasks. The main improve-
ment is the option to re-use previously computed oracle re-
sults by means of a per-example working set, and to alter-
nate between calls to the exact but slow oracle and calls to
an approximate but fast oracle. We also introduce rules for
dynamically choosing the working set size and number of
approximate passes depending on the algorithm’s runtime
behaviour and its progress towards the optimum. Overall,
the result is a easy-to-use method with default settings that
work well for a range of different scenarios.

Our experiments showed that MP-BCFW always re-
quires fewer iterations to reach a certain solution qual-
ity than the BCFW algorithm, which had previously been
shown to be superior to earlier methods. This leads to faster
convergence towards the optimum for situations in which
the max oracle is the computational bottleneck, as it is typ-
ical for structured learning tasks in computer vision.

In future work we plan to explore the situation of high-
dimensional or kernelized SSVMs, where a further acceler-
ation can be expected by caching inner product evaluations.
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