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Mathematical optimization plays a fundamental role in solving many
problems in computer vision (e.g., camera calibration, image alignment,
structure from motion). It is generally accepted that second order descent
methods are the most robust, fast, and reliable approaches for nonlinear op-
timization of a general smooth function. However, in the context of com-
puter vision, second order descent methods have two main drawbacks: 1) the
function might not be analytically differentiable and numerical approxima-
tions are impractical, and 2) the Hessian may be large and not positive defi-
nite. Recently, Supervised Descent Method (SDM), a method that learns the
“weighted averaged gradients” in a supervised manner has been proposed to
solve these issues. However, SDM is a local algorithm and it is likely to
average conflicting gradient directions. This paper proposes Global SDM
(GSDM), an extension of SDM that divides the search space into regions of
similar gradient directions.

Fig. 1a illustrates the idea of SDM. During training, in each iteration
SDM learns a single generic Descent Map (DM) from the optimal opti-
mization trajectories (indicated by the dotted lines). In testing, the same
DM is used for driving an unseen sample to X, (the labeled ground-truth).
DM exists under two mild conditions proved in [3]. For simple functions
with a unique minimum, such conditions normally hold. However, in many
real applications the function might have several local minima in a rela-
tively small neighborhood, for instance see Fig. 1b for an example. Standard
SDM would average conflicting gradient directions resulting in undesirable
performance. To overcome this issue, GSDM learns not one but a set of
generic DMs (in this example, four), one for different domains (colored by
different intensity of grays) of the objective function. Each domain contains
only similar gradient directions and one separate DM is learned for each. At
iteration k, X; may step into any of the four regions and the corresponding
DM is used to update.

Based on this intuition, this paper introduces and validates a new con-
cept, Domains of Homogeneous Descent (DHD) and extends the theory of
SDM to global optimization. In the paper, we prove that it is possible to find
a partition of domain x, such that there exists a generic DM for each sub-
set. The subsets of this partition are defined as DHD. However, to guarantee
the convergence of GSDM for a general function an exponential number
of DMs are required to be learned. In practice, we rely on the following
approximation. First, we apply dimension reduction techniques to the orig-
inal data. Then, we create a partition where each subset occupies one of
the hyper-octants in the reduced dimensional space, and a different DM is
learned for each subset.

We develop a practical algorithm based on the above approximation
to track faces from profile to profile. Our work differs from existing ap-
proaches in several ways. First, our approach do not pre-build any shape or
appearance model and we directly optimize over landmark coordinates. This
has been shown to provide superior performance for facial feature tracking
[2]. Second, our method provides a mathematically sound manner to par-
tition the parameter space for facial feature tracking. Existing approaches
typically find heuristic partition of the head pose angles. Finally, our method
is general and can be applied to other problems, such as extrinsic camera
calibration. There is a lack of datasets for evaluation of face tracking from
profile to profile as well as a standard protocol for evaluating tracking perfor-
mance. To fill the void, we build two challenging datasets, Distracted Driver
Face(DDF) and Naturalistic Driving Study(NDS), and propose a standard
evaluation protocol for facial feature tracking. Both the evaluation proto-
col code and NDS dataset are made available for the research community at
the following link: http://humansensing.cs.cmu.edu/xxiong.
Our experiments show that GSDM is able to track more frames and pro-
vides more accurate landmark prediction than SDM on both datasets. Ex-
amples of tracking results can be watched from the link: http://goo.
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Figure 1: a) A single Descent Map (DM) is used in SDM for minimizing a
simple function. b) An example of a more complex objective function. In
order to use SDM, its domain has to be split into four regions (represented
by different grays) and a separate DM is learned for each region.

gl/EGiUEV.

Besides GSDM, we establish the connection between SDM and Imi-
tation Learning (IL) [1]. SDM can be viewed as an algorithm for policy
derivation and the DM from each step can be interpreted as a learned opti-
mization policy in the context of IL. Since the ground truth solutions {x’}
are available throughout training, we can always receive the perfect feed-
backs based on the state observation. SDM takes advantage of this fact by
learning not one but a sequence of policies so the latter ones correct mistakes
made from previous iterations. To the best of our knowledge, SDM is the
first algorithm of IL applied to optimization. One of our ongoing research is
to explore extensions of SDM as a policy derivation algorithm and use it to
solve Robotics applications, such as inverse kinematics.
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