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Abstract

Mathematical optimization plays a fundamental role in
solving many problems in computer vision (e.g., camera
calibration, image alignment, structure from motion). It is
generally accepted that second order descent methods are
the most robust, fast, and reliable approaches for nonlinear
optimization of a general smooth function. However, in the
context of computer vision, second order descent methods
have two main drawbacks: 1) the function might not be an-
alytically differentiable and numerical approximations are
impractical, and 2) the Hessian may be large and not posi-
tive definite. Recently, Supervised Descent Method (SDM),
a method that learns the “weighted averaged gradients” in
a supervised manner has been proposed to solve these is-
sues. However, SDM is a local algorithm and it is likely
to average conflicting gradient directions. This paper pro-
poses Global SDM (GSDM), an extension of SDM that di-
vides the search space into regions of similar gradient direc-
tions. GSDM provides a better and more efficient strategy
to minimize non-linear least squares functions in computer
vision problems. We illustrate the effectiveness of GSDM
in two problems: non-rigid image alignment and extrinsic
camera calibration.

1. Introduction

Many computer vision problems (e.g., camera calibra-
tion, image alignment, structure from motion) are solved
with nonlinear optimization methods. In general, most
computer vision-related optimization problems of inter-
est have multiple local minima and are NP-hard to solve.
Global optimization algorithms are typically very computa-
tionally expensive, have poor convergence properties, and
generally suitable for low dimensional search spaces. As
a compromise, local optimization methods are usually em-
ployed to find a local minimum. Whether global optimiza-
tion can be solved in polynomial time is still unknown.
However, there is a large number of existing techniques that
approximate the solution. These techniques include Sim-
ulated Annealing [15, 31], Evolutionary algorithms [!8],
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Figure 1. a) A single Descent Map (DM) is used in SDM for min-
imizing a simple function. b) An example of a more complex ob-
jective function. In order to use SDM, its domain has to be split
into four regions (represented by different grays) and a separate
DM is learned for each region.

Monte Carlo methods [29, 30] or Branch and Bound [7, 22].
Additionally, Sminchisescu et al. [39] proposed an interest-
ing algorithm to systematically traverse nearby local min-
ima by locating the transition states.

Most global optimization methods are computationally
expensive and do not guarantee the global optima in poly-
nomial time. On the other hand, local optimization methods
based on gradient methods have achieved tremendous suc-
cess in computer vision problems. When applying gradient-
based methods to global optimization, multiple random
starts are typically required. Generally, initial values that
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are close to each other give descent paths that tend to the
same minimum point. This phenomenon is formally known
as basin of attraction, the set of initial values leading to the
same local minimum. In the context of local optimization,
it is generally accepted that for a general smooth function,
second order descent methods are the most robust, fast, and
reliable approaches for nonlinear optimization. However,
in the context of computer vision, second order descent
methods have two main drawbacks: 1) the function might
not be analytically differentiable and numerical approxima-
tions are impractical, and 2) the Hessian may be large and
not positive definite. To address these issues, Xiong and
De la Torre [44] proposed a Supervised Descent Method
(SDM) for optimizing Nonlinear Least Squares (NLS) func-
tions. Unlike previous methods, it uses supervised data to
drive the optimization search. SDM has shown promising
results in face alignment [1, 25, 43, 46, 48] and been ex-
tended to other computer vision applications such as, object
pose estimation [44], rigid object tracking [44], object re-
localization [26], human pose estimation [45], and object
part localization [45].

Fig. la illustrates the idea of SDM. During training, in
each iteration SDM learns a single generic Descent Map
(DM) from the optimal optimization trajectories (indicated
by the dotted lines). In testing, the same DM is used for
driving an unseen sample to x, (the labeled ground-truth).
DM exists under two mild conditions (see Section 2.1). For
simple functions, such conditions normally hold. However,
in many real applications the function might have several lo-
cal minima in a relatively small neighborhood, for instance
see Fig. 1b for an example. Standard SDM would average
conflicting gradient directions resulting in undesirable per-
formance. To overcome this issue, GSDM learns not one
but a set of generic DMs (in this example, four), one for
different domains (colored by different intensity of grays) of
the objective function. Each domain contains only similar
gradient directions and one separate DM is learned for each.
At iteration k, x;, may step into any of the four regions and
the corresponding DM is used to update the result. Based
on this intuition, this paper introduces and validates a new
concept, domain of homogeneous descent and extends the
theory of SDM to global optimization. In addition, we dis-
cover the connection between SDM and Imitation Learning
and develop a practical algorithm based on GSDM to track
faces from profile to profile and illustrate how GSDM can
also be used for extrinsic camera calibration.

2. Theory

In this section, we extend the theory of SDM to deal
with multiple local minima. First, we review the concept
of DM and the two conditions for it to exist. Second, we
discuss SDM’s interesting connection with Imitation Learn-
ing. Then, we introduce and validate a new concept termed,

domains of homogeneous descent.

2.1. Review of SDM

This section reviews SDM originally introduced in [44]
and its theoretical properties. See footnote' for notation.
Given a Nonlinear Least Squares (NLS) problem,

m)jnf(x) = m)in Ih(x) -y, (D

where h(x) : R” — R™ is a nonlinear function, y € R™
is a known vector, and x € R" is the optimizing parameter.
Applying the chain rule to Eq. 1, the gradient descent update
rule yields

xp = Xp_1 — 0AJp (xp_1)(h(xx_1) —y)  (2)

where Jp, (x) € R™*™ is the Jacobian matrix, A € R™"*" is
the identity (I,,) in first-order methods, or the inverse Hes-
sian (or an approximation) for second-order methods, and a
is the step size. Computing the rescaling factor A and gradi-
ent direction Jy, in high-dimensional spaces is computation-
ally expensive and can be numerically unstable, especially
in the case of non-differentiable functions, where finite dif-
ferences are required to compute estimates of the Hessian
and Jacobian. The main idea behind SDM is to avoid ex-
plicit computation of the Hessian and Jacobian and learn
the generic DM (R ~ «AJy(x;—1)) from training data.
Note that DM is not a descent direction, it contains part of
descent direction and needs to multiply with (h(x) — y) to
produce a descent direction. Alternatively, R can be seen as
the “weighted average gradient direction” of h around x,.
We define R more formally below.

Definition 1. A matrix R € R™"*™ s called a generic de-
scent map if there exists a scalar 0 < ¢ < 1 such that

Vx € N(x4), ||x« — xi|| < f|xs — xp—1||- Xx is updated
using the following equation:
X, = Xkp—1 — R(h(xr—1) — h(x.)). 3)

Xiong and De la Torre [44] proved the existence of a
generic DM under the following conditions: 1). Rh(x) is
a strictly locally monotone operator anchored at the opti-
mal solution x,. 2). h(x) is locally Lipschitz continuous
anchored at x..

2.2. SDM as Policy Learning

Imitation Learning (IL) can be seen as a special case of
Supervised Learning. In Supervised Learning, the agent is

1 Bold capital letters denote a matrix X; bold lower-case letters denote
a column vector x. All non-bold letters represent scalars. x; represents
the ith column of the matrix X. x;; denotes the scalar in the it" row and
4tP column of the matrix X. z; denotes the scalar in the 4t element
of x. I, € R™X™ is an identity matrix. ||x|| = vxTx denotes the
Euclidean distance. ||X||p = /tr(XTX) = /tr(XXT) designates
the Frobenious norm of a matrix. N (x) denotes the neighborhood of x.
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presented with labeled training data and learns an approx-
imation to the function that produced the data. Within IL,
this training dataset is composed of example executions (se-
quences of state and action pairs) of the task by a demon-
stration teacher. The goal is to derive a policy that repro-
duces the demonstrated behavior. The world consists of
states .S, actions A, and a policy is the mapping between the
two. In real-world applications, the state is often not fully
observable and the learner instead has access to an observed
state Z.

In the context of minimizing a NLS function, y is re-
garded as the desired state and the objective is to find the
action Ax that moves from the initial state to the desired
state. The nonlinear function h is the feature function that
partially represents the state. The demonstration data con-
tains a set of observation and action pairs. The observed
states are represented by a set Z = {h(x’) — y'} of er-
rors (misalignments) between the known vectors {y*} and
the function evaluations at the current parameter estimates
{h(x%)}. The action set will correspond to the parameter
updates A = {Ax'}, and the policy maps misalignments
to parameter updates. In SDM, the policy is derived as a
sequence of linear mapping functions between states and
actions. Within this context, the teacher is always available
for giving feedback. More specifically, since the ground
truth solutions {x%} are available throughout training, the
teacher can always give the perfect action based on the state
observation. SDM takes advantage of this fact by learning
not one but a sequence of policies so the latter ones correct
mistakes made from previous iterations after the teacher’s
feedbacks.

2.3. Domains of Homogeneous Descent

For a function f with a unique minimum, the gradients
of h often share similar directions. Therefore, a weighted
average can be learned. When dealing with the function f
with several local minima (See Fig. 1b for an example), the
gradients of h may have conflicting directions so averaging
them is not adequate and it may cause the SDM training to
stall. Later in the paper, we validate this intuition in our
experiments on extrinsic camera calibration. When we en-
large the parameter space, the performance of SDM drops
dramatically.

We will bypass this problem by learning not one but a
set of DMs. In the following, we will prove that it is pos-
sible to find a partition of domain x, S = {St 1T, such that
there exists a generic DM R!,Vt, x € St. The subsets of
this partition is defined as Domains of Homogeneous De-
scent (DHD). In Fig. 2 we plot four NLS functions along
with their DHD found by following the strategy proposed
in Theorem 1. Interestingly, local minima are located at the
intersections of different domains.

Theorem 1. Under one minor condition:

x) —h(x.)||

h
JK > 0, I < K,¥x € N(x4), (4)

[[x = .||

there exists a finite partition of domain x, S = {S*}¥, such
that Vx € S, there exists a generic DM RE.

Proof. To simplify the notation, we denote x, — x as Ax
and h(x,) — h(x) as Ah. We will prove the above the-
orem by finding a specific partition with its corresponding
DM:s. Let us consider a partition strategy based on the signs
of Az;Ah;. Each sign can take on two values +1 and j
ranges from 1 to min(n,m). Each subset of this partition
contains x that satisfy one of the 2™(") unique condi-
tions. Without loss of generality, let us derive the DM for
the subset S° where Vj, sign(Az;Ah;) = 1. We want to
show that there exists a R such that

1% — x5l

* k—1

We replace xi with x¢_, using Eq. 3 and squaring the left
side of Eq. 5 gives us,

IAx; > A%,y — RARG |2

1A}, [TACS Y
. . LT .
:HAXZ—1||2 [RARj_, | B Ax;_RAh;
[Ax; 17 1A 4|12 [Ax;,_4[?
[RARE || ( . +  RAh}
=14 | [RAh}_[| = 24X} |
[Ax;,_,[1? i *“RARj_, |
(6)
Setting Eq. 6 < 1 gives us,
, +  RAh!
RAh}_, | < 2Ax) | — =1 7
|| krle = Xk—1 ||RAh§c,1|| ( )

The choice of R needs to guarantee that the right side of
Eq. 7 is greater than zero. Remember that in subset S(*)
sign(Axz;Ah;) = 1,Vj. A trivial R would be ¢D, where
¢ > 0 and D is a rectangular diagonal matrix with the diag-
onal elements equal to 1. From the geometric definition of
dot product, we can rewrite the right side of the inequality 7
as,

RAR!

T
2AXY  —— T
1 RARL |

= 2||Ax || cos @,

where ' is the angle between vectors Ax};_l and
RAb;_,. Using the condition stated in 4 we have

4 9 A ,
2||Ax},_q || cos 6" > ?HAhZ_lH cos 6. 8)

From the Cauchy-Schwartz inequality,

IRAR, || < [R][F[lANG . ®)
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Figure 2. [llustration of DHD on four NLS functions where h(x) :
R? — R?. Different domains are colored in different grayscales.

Given the inequalities in Eqs. 8 and 9, the condition that
makes Eq. 7 hold is,

2 .
IR|F = ve|Dllp = Ve s geost’. (10)

Any R = ¢D where /¢ < & min; cos#" guarantees the
inequality stated in Eq. 5. Therefore, there exists a generic
DM for subset S(®). For other subsets in the partition a
general choice of D has the entries

g — 0 ifi #j

G sign(Ax§7k_1Ah§-7k_1) Otherwise.
Following the same proof we can easily show DM exist for
other subsets in the partition. O

Above, we proposed a simple partition strategy and
proved the existence of DHD. In the next section, based
on this strategy we derive a practical algorithm with ap-
plications to extrinsic camera calibration and facial feature
tracking.

3. Application to Facial Feature Tracking

In this section we first review previous work on track-
ing profile-to-profile faces and the SDM’s formulation on
this problem. Next, we derive a simple strategy for finding
DHD of the tracking objective function and following this
strategy we extend SDM to track profile-to-profile faces.

3.1. Previous Work on Multi-view Face Tracking

Previous work on multi-view facial feature tracking can
be grouped into two categories based on whether a 2D or
3D face model is used.

Let us first review some of the 2D model based ap-
proaches. The shape of a deformable object can be mod-
eled by a probability density function. A multi-modal 2D
face model can be represented either in a non-parametric
way e.g., kernel density estimation [38] or in a paramet-
ric way, e.g., a mixture of Gaussians [8]. Therefore, there
are two common strategies to extend traditional frontal face
alignment methods to multi-view tracking. The first one is
to build separate models according to the head pose. Some
of the examples are multi-view Active Appearance Model
(AAM) [10], view-based Active Wavelet Networks [19],
and multi-view Direct Appearance Models [24]. The other
is to use kernel methods. For example, Romdhani e? al. [33]
extended Active Shape Model [9] to track profile-to-profile
faces. They used kernel PCA [36] to non-linearly model
the shape variation across large pose changes. However,
kernel-based density estimation is slow and its complexity
increases with number of training samples. Another inter-
esting work [47] treated the shape parameter and pose as
hidden variables and framed the alignment problem into a
Bayesian framework. However, the inference is intractable
so the EM algorithm (local minima prone) is used to ap-
proximate the solution. Beyond the two common strategies,
another way to address the multi-view problem would be
online tracking. Ellis et al. [14] proposed an efficient online
tracker using adaptive appearance models, and one could
extend this approach to track faces and other nonrigid ob-
jects.

Next, let us take a look at 3D model based approaches.
Matthews et al. [28] provided a detailed comparison be-
tween 2D and 3D face models in three different aspects, fit-
ting speed, representational power, and construction. They
concluded that 2D face model may be too “powerful” that
can represent invalid faces. Xiao et al. [42] extended the
AAM fitting algorithm to impose additional shape con-
straints introduced by a 3D model that are lacked in the 2D
model. Baltrusaitis et al. [2] extended Constrained Local
Models [1 1] for RGBD data streams and show better align-
ment performance than its original. However, the training
data is difficult to collect. Gu and Kanade [17] formulated
multi-view face alignment as a Bayesian inference problem
with missing data, whose task is to solve 3D shape and 3D
pose from the noisy and incomplete 2D shape observation.
Recently, Cao er al. [5] extended an earlier 2D regression-
based framework [6] with a 3D face model, but only near-
frontal face results are shown in the experiments. Other in-
teresting work [37, 40, 49] have been proposed for detect-
ing facial landmarks in the profile-to-profile faces but they
are not suitable for tracking applications. Note that most
3D based methods still rely on head pose to build separate
models to address the multi-view problem.

Our work differs from existing approaches in several
ways. First, our approach do not pre-build any shape or ap-
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pearance model and we directly optimize over landmark co-
ordinates. This has been shown to provide superior perfor-
mance for facial feature tracking [43]. Second, our method
provides a mathematically sound manner to partition the
parameter space for facial feature tracking. Existing ap-
proaches typically find heuristic partition of the head pose
angles. Finally, our method is general and can be applied
to other problems, such as extrinsic camera calibration (see
Section 4.2).

3.2. SDM’s Formulation

Given an image d € R™*! of m pixels, d(x) € RP*!
indexes p landmarks in the image. h is a non-linear fea-
ture extraction function (e.g., SIFT [27] or HoG [12]) and
h(d(x)) € R!2®>1 in the case of extracting SIFT fea-
tures. During training, we will assume that the correct p
landmarks are known, and we will refer to them as x,. In
this setting, SDM frames facial feature tracking as minimiz-
ing the following function over Ax

f(x0 + Ax) = [|h(d(x0 + Ax)) — &, |3, (11)

where x is the initial configuration of the landmarks which
corresponds to an average shape and ¢, = h(d(x.)) rep-
resents the SIFT values in the manually labeled landmarks.
In the testing images, ¢, is unknown. SDM modifies the
objective to align with respect to the average template ¢,
over all training images and the parameter update in Eq. 3
is modified accordingly,

Ax =Ry(d, — ¢y). (12)

SDM learns Ry, by minimizing the loss between the true
parameter update Ax] = x! — x|, and the expected one
over all training samples

> AxE - Ri(, — o))l (13)

In training, SDM learns a sequence of DMs by iterating the
above two steps, minimization of Eq. 13 and update 12 until
convergence. In testing, those DMs are used for recursively
updating shape parameters following Eq. 12.

3.3. Global SDM

SDM provides an efficient and accurate solution to track
facial features in near-frontal faces, but it fails at tracking
faces with large head rotations. When tracking profile-to-
profile faces the shape parameter space is enlarged so it is
unlikely to find a single valid DM (See section 2.1 and re-
call the two conditions for DM to exist). Theorem 1 shows
that it is possible to partition the parameter space such that
there exists a DM within each subset. Given a finite set
of samples, finding the optimal DHD S = {S*}7 and its

corresponding DMs R = {R!}T can be formulated as the
following constrained optimization problem,

T
. 7 t 7,612
mind > [|Ax, ~ R*A¢"| (14)
t=1 48t
5.t AxE RIAGH > 0,17 € St (15)

One can use a predefined 7" or choose the best 1" using a
validation set. We denote ¢ — @' by A¢™", where ¢. is
the template averaged over all image in the t*" subset. The
constraints stated in 15 guarantee that R'h(x) is a mono-
tone operator around x,, which is one condition ensuring
that R/ is a generic DM within the ¢ subset.

Minimizing 14 is NP-hard. We develop a determinis-
tic approach to approximate the solution of 14. If R! is a
local minimizer, one necessary condition is that the partial
derivative of 14 against R is zero yielding

R! = AX'AD! T (AGTAGT )L (16)

AX! and ®* are matrices whose columns are Ax’. and ¢"
from the t*" subset. Plugging Eq. 16 into the constraints in
15 yields,

Axl T AXEAG (AGTAD ) TIAGH > 0,0 € S
(17)

The sufficient conditions for 17 are

Axi AXE > 0,¥ie St (18)
AP (ADIAD ) TIAGY > 0,V ST (19)

From the fact that any two vectors within the same hyper-
octant (the generalization of quadrant) have a positive dot
product, we design a partition such that each subset occu-
pies a hyperoctant in the parameter space. This partition
satisfies the inequalities in 18. We can apply the same strat-
egy to further partition each subset according to the hyper-
octants in feature space, which yields the following inequal-
1ties

AT AgH > 0,10 € St (20)

The covariance matrix P is positive-definite (if not, a
diagonal matrix can be added). The inverse of a positive
definite matrix is also positive definite. This fact along with
20 suffice to show the inequalities in 19. However, this par-
tition is impractical leading to exponential number of DMs
so we propose the following approximation.

In the case of human faces, Ax and A¢ are embedded
in a lower dimensional manifold. We perform dimension
reduction (PCA) on the whole training set AX and project
the data onto the subspace expanded by the first two most
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Figure 3. Three sample images from the Driver-face dataset. a) A
near-frontal face labeled with 49 points. The subject is recorded
inside of a car during daytime. b) A profile face labeled with 31
points. The subject is recorded during nighttime under IR light. c)
The subject is recorded indoors.

dominant directions. This gives us a partition in R? where
each subset occupies a quadrant. Each subset inside this
partition is further partitioned into two halves based on the
first principle component learned from A®. This partition
strategy gives us eight subsets so eight DMs are learned in
each iteration of the algorithm. The PCA bases are saved
and used to determine which DM to use in testing time. The
training of GSDM converges in four iterations. In testing x,
is unknown and assuming that the movement between two
consecutive frames is small the prediction of the previous
frame is used to approximate Ax,. We only used two PCA
bases, although one can increase the number of bases to cre-
ate more subsets in the partition. The approximation would
be more accurate at the same time more training data will be
needed to learn a reliable DM. One can also use nonlinear
dimension reduction techniques [32]. This simple partition
strategy has been validated in our experiments and yields
promising results.

4. Experiments

This section illustrates the effectiveness of GSDM on
two computer vision problems. First, we illustrate how
GSDM is able to track the face from profile to profile. Sec-
ond, we show how GSDM can be applied to solve the ex-
trinsic camera calibration problem.

4.1. Facial Feature Tracking from Profile to Profile

Over the past few years, researchers in the face align-
ment field have made rapid progress on improving the land-
mark accuracy and speed of the algorithms. Such progress
is made possible by the availability of larger and more chal-
lenging datasets e.g., LFPW [3], Helen [23], AFLW [21],
AFW [35], IBUG [34]. However, there is a lack of
datasets for evaluation of face tracking from profile to pro-
file as well as a standard protocol for evaluating track-
ing performance. To fill the void, we build two challeng-
ing datasets, Distracted Driver Face(DDF) and Naturalis-

tic Driving Study(NDS), and propose a standard evaluation
protocol for facial feature tracking. Both the evaluation pro-
tocol code (including the labels) are made available for the
research community”.

The DDF dataset contains 15 video sequences, a total
of 10,882 frames. Each sequence captures a single sub-
ject performing distracted driving in a stationary vehicle or
an indoor environment. 12 out of 15 videos are recorded
with subjects sitting inside of a vehicle. Five of them are
recorded in the night under infrared (IR) light and the oth-
ers are recorded during the daytime under natural lighting.
The remaining three are recorded indoors. Fig. 3 shows one
example of each category and its corresponding labels.

The NDS dataset [4]1] contains 20 subsequences of
driver faces recorded during a drive conducted between the
Blacksburg, VA and Washington, DC areas. Each sequence
consists of a one-minute video recorded at 15 fps with a
resolution of 360 x 240. For both datasets, we labeled
one in every ten frames and each labeled frame consists
of either 49 landmarks (near-frontal faces) or 31 landmarks
(profile faces). Both datasets consist of many faces with
extreme pose (£90° yaw, +50° pitch) and many under ex-
treme lighting condition (e.g., IR). NDS is the more chal-
lenging one due to the low spatial and temporal resolution.

Evaluation protocol: A popular evaluation metric for
facial feature detection is the cumulative error curve. How-
ever, this curve cannot take into account the frames that
are lost during tracking. We propose the Cumulative Er-
ror Histogram (CEH) as the evaluation metric. The idea
of CEH is to quantize the tracking error at different scales.
The histogram will have k bins, where the i!” bin counts
the fraction of frames (number of frames over total num-
ber of frames) with errors less than the ‘" error scale. For
the frames where the tracker is lost or the landmark error
is larger than the last error scale, we add them to the last
bin. For the successfully tracked frames, the error is mea-
sured using the normalized root mean square (RMS) metric.
In previous work, normalization is often done by using the
inter-ocular distance. However, for a profile face such dis-
tance tends to go to zero so we use the face length as a ref-
erence approximated by the distance between the lower lip
point and the inner eyebrow point. The mean of all bins in
a CEH can be used as single-value score to compare among
different tracking methods. The CEH score has the value
between 1 and % with higher value indicating better per-
formance. In the worst case, e.g., no face is tracked in a
sequence, all bins except the last one equal to zero yielding
a score of % On the other hand, the score equals one if all
frames fall in the first bin.

In the experiments, both the SDM and GSDM algorithms
are trained on MPIE [16] and a subset of LFW [20]. We
used CEH to measure the performance of each tracker, and

2http://humansensinq.cs.cmu.edu/xxionq
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k = 10 and the max error is set to be 0.06. A face detec-
tor (OpenCV [4] in our case) is called once the tracker is
lost and the tracker is not re-initialized until a valid face is
detected. No manual effort is involved to re-initialize both
trackers. Fig. 4 shows CEHs between SDM and GSDM in
both datasets. GSDM is able to track more frames and pro-
vides more accurate landmark prediction than SDM. Both
algorithms have significant performance drop-off in NDS
dataset because of the noisy, low resolution images and
heavy occlusion introduced by the sunglasses. Addition-
ally, images in NDS dataset are significantly different than
the ones in our training set. Example results can be found
in Fig. 6 or from the link below’. Our C++ implementa-
tion averages around 8ms per frame, tested with an Intel i7
3752M processor.

4.2. Extrinsic Camera Calibration

This section reports the experimental results on extrin-
sic camera calibration using GSDM and a comparison with
SDM and the widely popular POSIT method [13]. For both
SDM and GSDM, extrinsic camera calibration is formu-
lated as minimizing the following NLS function,

min ||h(x, M) — U||p,

where h is the projection function and x = [6;t], 0,t
are vectors of three rotation angles and translations, respec-
tively. M € R3*" is the 3D object in consideration, and
U € R?*" is the image projection under the pose parameter
x. In the training of GSDM, we follow a similar partition
strategy introduced in section 3.3. Each dimension in the
parameter space is independent of each other so no dimen-
sion reduction is needed. DHD are found by splitting the
parameter space according to three rotation angles. Each
domain within DHD occupies an octant in R?. It gives us
eight DMs to learn in every iteration and training iteration
is set to be 10. In testing, unlike in the tracking application
where we can use the previous frame information as an ap-
proximation of x,, we iterate through all DMs and uses the
one that returns the minimum reprojection error.

The experiment is set up as follows. We select three
different 3D objects: a cube, a face, and a human body4
(see Fig. 5a). We place a virtual camera at the origin of
the world coordinates. In this experiment, we set the focal
length (in terms of pixels) to be f, = f, = 1000 and prin-
ciple point to be [ug, v9] = [500, 500]. The skew coefficient
is set to be zero. The training and testing data are generated
by placing a 3D object at [0, 0, 2000], perturbed with dif-
ferent 3D translations and rotations. The POSIT algorithm
does not require labeled data. Three rotation angles are uni-
formly sampled from —60° to 60° with increments of 10°

3http://goo.gl/EGiUFV
4www.robots.ox.ac.uk/"wmayol/3D/nancy7matlab.
html

in training and 7° in testing. Three translation values are
uniformly sampled from —400mm to 400mm with incre-
ments of 200mm in training and 170mm in testing. Then,
for each combination of the six values, we compute the ob-
ject’s image projection using the above virtual camera and
use it as the input for both algorithms. White noise (o2 = 4)
is added to the projected points. In our implementation of
both SDM and GSDM, to ensure numerical stability, the
image coordinates [u, v] of the projection are normalized as
follows: [ﬂ = [(u B uO)/f:r:| .
b (v =)/ fy

Fig. 5b shows the mean errors and standard deviations
of the estimated rotations (in degrees) and translations (in
mm) for three algorithms. SDM performs the worst among
the three because the parameter space is so large that there
not exists a single DM. GSDM overcomes this problem by
partitioning the large space into eight subsets and learning
eight DMs. Both GSDM and POSIT achieve around 1° ac-
curacy for rotation estimation, but GSDM is much more ac-
curate for translation. This is because POSIT assumes a
scaled orthographic projection, while the true image points
are generated by a perspective projection.

5. Conclusions

SDM provides an elegant and efficient method to solve
local optimization problems in NLS functions. However,
SDM is a local algorithm and it is likely to average con-
flicting gradient directions. This paper proposed GSDM,
an extension of SDM that divides the search space into do-
mains of similar gradient directions. We illustrated its effec-
tiveness in two applications, facial feature tracking and ex-
trinsic camera calibration. In both applications, we demon-
strated GSDM’s superior performance to previous meth-
ods. However, our partition strategy is a more natural fit for
tracking applications since an approximate x, is needed. In
the case of extrinsic camera calibration, no previous frame
information is given so we have to iterate through all DMs.
In the experiment of camera calibration, we made one im-
plicit assumption that during optimization the updating pa-
rameter never goes out of the domain initially selected. In
other applications this assumption may not hold, so in the
worst case we may need to iterate through an exponential
number of combinations of DMs before finding the optimal
solution. It is possible that better partition strategies exist
within the GSDM framework, and we will explore those in
the future work. Besides GSDM, we established the con-
nection between SDM and Imitation Learning. In addition,
we built a public dataset and proposed an evaluation proto-
col for benchmarking facial feature tracking methods.
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Figure 4. Performance comparison between SDM and GSDM in terms of CEH on DDF dataset (left) and NDS dataset (right).

0, 0, 0, ta t, t.
SDM | 52+52 89484 105+89 | 18.0+144 184+142 129.9+120.9
Cube GSDM | 0.7+0.7 09+09 07407 | 24+31 24+31 171+173
POSIT | 0.84+0.7 09+08 0.7+06 |665+48.1 66.3+51.3 69.4=+50.3
SDM | 58+6.2 10.3+104 109=+124 ] 146+18.1 14.3+187 123.4=+132.9
Face GSDM | 08+10 11+12 09+10 | 25+83 24+78 189+198
POSIT | 1.54+13 1.9+17 15+13 |286+244 325+228 47.3+36.8
SDM | 3.0+44 44+61  47+6.9 | 12.1+£205 12.3+20.7 101.3+134.2
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! w POSIT | 0.6+0.6 2.5+26 1.1+0.9 |38.0+221 2854272 37.8+30.9

(a) (b)
Figure 5. a) 3D objects used in the experiments of extrinsic camera calibration. Units are in millimeters (mm). b) Experimental results on
extrinsic camera calibration in terms of mean errors and their standard deviations from three algorithms. Rotation errors are measured in
degrees and translation errors are measured in mm.

1500

Figure 6. Tracking results from GSDM on the DDF dataset (top three rows) and NDS dataset (bottom three rows).
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