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In this work we show that when combined with single/multiple homogra-

phy estimation, the general Euclidean rigidity constraint provides a simple

formulation for scene structure recovery without explicit camera pose com-

putation. This direct structure estimation (DSE) opens a new way to design

a SFM system that reverses the order of structure and motion estimation.

Almost all modern SFM systems start with relative pose estimation from

feature correspondences (e.g. SIFT[5]) between two [2, 7] or three views [8,

9]. Reliable and accurate relative pose estimation is critical for a robust SFM

system. However, to compute relative poses reliably is a non-trivial task.

Most techniques suffer from instability caused by planar scenes [7], which is

commonly seen in man-made environments. As a result, a separate process

for detecting a dominant homography is often adopted in SFM systems.

Besides this well-known limitation of state-of-the-art SFM systems, there

is also a technique ‘void’ in the general methodology of SFM as pointed out

by Li [4]. In almost all traditional SFM methods, camera motion estimation

always comes first, then followed by 3D structure computation.

While appreciating the rationales behind the traditional SFM schemes,

such as theoretical elegance and practical effectiveness, we are interested in

the feasibility and advantage of a structure-first approach for practical SFM

systems. In fact, we observed that, with known intrinsic camera parameters,

the ratio of the depths of a 3D point in two different views can be directly

inferred from a homography relating the two image points (see Fig. 1).

We find the proposed approach works particularly well for sideway mo-

tion regardless of the number of available planar structures. This is actually

a desired property in practice, since sideway motion is good for structure

computation and is prevailing in data capturing for 3D reconstruction.

We use three views as the basic building block for DSE. The relative

poses computed from the scene structures are readily integrated into existing

SFM systems such as [3, 6]. If a pair of corresponding calibrated points p =
(x,y,1)T and p′ = (x′,y′,1)T in images I and I′ are related by a homography

H, we have the following equation

λp′ = Hp, (1)

where λ is a scalar. H is scaled such that H = R+ tnT

dπ
.

Proposition: Let d and d′ denote the depths of a 3D point X in view I and I′,

with projected 2D points p and p′, respectively. Then we have the equality

λ = d′

d . The proof is given in the paper.

We show that the homography induced depth ratio together with the

Euclidean rigidity constraint lead to a simple formulation for solving the

relative depths of 3D point pairs. According to the Euclidean rigidity con-

straint, the distance between the 3D points Xi and X j does not change under

any rigid body transformation, i.e. ‖d′
ip

′
i −d′

jp
′
j‖= ‖dipi −d jp j‖.

Given the depth ratio λi =
d′

i

di
and λ j =

d′
j

d j
obtained from the respective

homography relating each pair of the corresponding points, we can obtain

‖λi
di

d j
p′

i −λ jp
′
j‖= ‖

di

d j
pi −p j‖. (2)

Let α = di

d j
, we arrive at the following quadratic equation about α ,

Aα2 +Bα +C = 0,where (3)

A = ‖λip
′
i‖

2 −‖pi‖
2
,

B = −2(λiλ jp
′T
i p′

j −pT
i p j),

C = ‖λ jp
′
j‖

2 −‖p j‖
2
.

Given a third view I′′, we directly solve the following minimization

problem to obtain the optimal solution,

αi j = argmin
α
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This is an extended abstract. The full paper is available at the

Computer Vision Foundation webpage.
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Figure 1: The proposed DSE utilizes the homography induced depth ratio

and Euclidean rigidity constraint to estimate the structure directly without

camera pose recovery. (a) Geometric interpretation of homography decom-

position. (b) Homography induced depth ratios λi and λ j together with the

rigidity constraint give the estimate for αi j .
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Figure 2: Structure estimation from two sets of relative depths (best viewed

in color). (a) Relative depths αki computed using point pi as reference. (b)

Relative depths αk j computed using point p j as reference. (c) The final

structure is computed as the average of the scaled relative depths.

Collectively, for each point pi ∈ S with its depth fixed as di = 1, the

depths of all the points in the same view are given by αki =
dk

di
. If there is

zero noise in the data, we shall have

{αki}= β ji{αk j},∀k ∈ [1,N] , (5)

meaning that each set of depths only differs by a global scaling factor (see

Fig. 2). We compute the average scaling factor for each set of depths using

RANSAC [1]. The average depth for each point pi is computed similarly

after applying the scaling factor to each set of depth estimation (Fig. 2(c)).

The proposed techniques for multiple homography estimation and to

integrate DSE to a general SFM system are presented in the paper.
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