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Abstract

Object recognition by zero-shot learning (ZSL) aims to

recognise objects without seeing any visual examples by

learning knowledge transfer between seen and unseen ob-

ject classes. This is typically achieved by exploring a se-

mantic embedding space such as attribute space or seman-

tic word vector space. In such a space, both seen and un-

seen class labels, as well as image features can be embed-

ded (projected), and the similarity between them can thus

be measured directly. Existing works differ in what embed-

ding space is used and how to project the visual data into

the semantic embedding space. Yet, they all measure the

similarity in the space using a conventional distance metric

(e.g. cosine) that does not consider the rich intrinsic struc-

ture, i.e. semantic manifold, of the semantic categories in

the embedding space. In this paper we propose to model the

semantic manifold in an embedding space using a semantic

class label graph. The semantic manifold structure is used

to redefine the distance metric in the semantic embedding

space for more effective ZSL. The proposed semantic man-

ifold distance is computed using a novel absorbing Markov

chain process (AMP), which has a very efficient closed-

form solution. The proposed new model improves upon and

seamlessly unifies various existing ZSL algorithms. Exten-

sive experiments on both the large scale ImageNet dataset

and the widely used Animal with Attribute (AwA) dataset

show that our model outperforms significantly the state-of-

the-arts.

1. Introduction

Zero-shot learning (ZSL) for large scale visual object

recognition has received increasing attention recently [9,

16, 23, 26, 25, 21, 17, 11]. This is because although virtu-

ally unlimited images are available via social media sharing

websites such as Flickr, there are still not enough annotated

images for building a model for recognising a large num-

ber of visual object classes. ZSL aims to imitate humans’

ability to recognise a new class without seeing any visual

examples. A human has that ability because one is able to

relate an unseen object class with the seen classes based on

its semantic description. For example, assuming a child can

recognise a horse; having been told that a zebra is more-or-

less like a horse but with black-and-white stripes, the child

has a good chance of recognising a zebra the first time it is

seen. Similarly a zero-shot learning method for visual clas-

sification relies on the existence of a labelled training set

of seen classes and the knowledge about how each unseen

class is semantically related to the seen classes.

The seen and unseen object classes can be related in a

semantic embedding space where each class label/name is

represented as a high dimensional vector. The spaces used

by most early works are based on semantic attributes [16].

Given a defined attribute ontology, each class name can be

converted to a binary attribute vector. More recently, em-

bedding based on semantic word space has started to gain

popularity [10, 21, 29]. Better scalability is typically the

motivation for this approach as no manually defined ontol-

ogy is required and the space is learned using a vast unan-

notated text corpus by natural language processing. Such

an approach can embed any class name for free (vs. costly

labelling of attributes and ontology thereof). Regardless the

space used, the embedded class name (a vector) is called a

prototype of that class [11].

Given a semantic embedding space and a set of seen and

unseen class prototypes, the semantic relatedness between

an unseen class and each seen class can be measured as a

distance between the two class prototypes. However, an

image of a visual object is represented by a visual feature

vector; its distance to the unseen class prototypes in the se-

mantic embedding space cannot be measured directly. Ex-

isting methods for solving this problem fall into two cat-

egories. The first category (Fig. 1(a)) relies on learning a

n-way discrete classifier for the seen classes in the visual

feature space, which is then used to compute the visual sim-

ilarity between an image of unseen class to those of the seen

classes. These seen classes serve as the mediators for the

unseen classes and the test images [2]. Specifically, the se-

mantic relatedness between the seen and unseen classes is
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Figure 1. Our Absorbing Markov chain process (AMP) based zero-

shot learning framework unifies Semantic Relatedness (SR) and

Semantic Embedding (SE) based methods for ZSL. Given an un-

seen class image, x and Px are the visual feature vector and its

projection in the embedding space respectively. The seen and un-

seen class prototypes are denoted as y and z respectively.

modelled by the distance between their prototypes, or the

knowledge from linguistic processing [26]. Such seman-

tic relatedness (similarity) is then compared with the visual

similarity and the image is classified to an unseen class if

the two types of similarities against the mediators, i.e. seen

classes, match. In contrast, methods in the second category

(Fig. 1(c)) are based on embedding directly the visual fea-

ture vectors into a semantic embedding space [1, 10, 29].

This is typically achieved by learning a projection function

between the visual feature space and the semantic embed-

ding space. Such a function is learned from the labelled

training visual data consisting of seen classes only. After

this visual feature embedding (mapping) process, zero-shot

classification is performed directly by measuring similarity

using nearest neighbour (NN) or its probabilistic variants

such as direct attribute prediction (DAP) [16]. These two

categories are denoted in this paper as Semantic Related-

ness (SR) and Semantic Embedding (SE) respectively.

A common characteristic of existing ZSL models from

both approaches is that they all rely critically on computing

the similarity distance in the semantic embedding space. All

existing methods adopt a conventional distance metric com-

puted directly in the embedding space. However, as shown

in Fig. 2, the distribution of the semantic class prototypes in

the semantic embedding space has a rich intrinsic manifold

structure. Existing direct distance metrics ignore such struc-

ture therefore are suboptimal. In this work, we explore this

semantic manifold structure in order to define a new simi-
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Figure 2. An example of semantic manifold. We group the classes

from ImageNet 2012 1K dataset into eight superclasses (food, in-

vertebrate, canine, bird, instrument, vehicle, structure and cover-

ing) according to [5] and visualise the 1,000D word2vec embed-

ding [20] into 2D low-dimensional space using t-SNE [30] in 2D.

It is evident that a semantic manifold structure exists and the ob-

ject classes from the same superclass lie in the same manifold. In

this work, we formulate a semantic manifold constrained similar-

ity distance to solve the zero-shot learning problem.

larity distance metric between a test image and the unseen

class prototypes for ZSL. We formulate a representation of

this structure using a semantic graph where each class is a

node and the connectivity on the graph is determined by the

semantic relatedness between classes.

By exploiting the semantic manifold, we can measure a

semantic distance based on two assumptions: (1) If the pro-

jection of a test image and an unseen class prototype are

connected by strongly related seen class prototypes, they

should be “close” (small distance or high similarity) on the

manifold, and thus likely to have the same class label. We

call this the connectivity assumption. For example, the se-

mantic concepts grass, tree and snake are strongly related

because they usually appear in the same context, i.e. for-

est, although the superclass of snake is different with that of

grass and tree. If a test image and an unseen class prototype

are all close to the structure (context) formed by grass, tree

and snake, they are likely to have the same label, e.g. an ani-

mal living in forest. (2) If the projection of a test image and

an unseen class prototype are on the same local structure

(typically referred to as a cluster or a local manifold), they

are likely to have the same label. This assumption is often

called the cluster assumption [27, 3, 32]. For example, if a

test image and an unseen class prototype fall into the same

local manifold (e.g. bird in Fig. 2), they are likely to have

the same label, e.g. a specific type of bird.

Based on the proposed semantic manifold representa-

tion and two assumptions above, a novel zero-shot learn-

ing (ZSL) algorithm is formulated. Specifically, given an



embedding space and a semantic graph representing the

structure of the underlying semantic manifold (Figs. 1(b)

and 1(d)), we first ‘connect’ the visual feature vector of

a test image to a set of seen class nodes on the graph.

This is achieved by either a n-way seen class classifier

(Fig. 1(b)) or the semantic embedding of the visual feature

vectors (Fig. 1(d)). For measuring the similarity distance

between the image and any unseen class on the semantic

manifold, we design a special Absorbing Markov chain Pro-

cess (AMP), by which the seen class nodes are the transient

states and the unseen class nodes are the absorbing states.

Our Markov chain process starts from the test image node

and ends (absorbed) in one of the absorbing states (unseen

class nodes), which indicates to which unseen class this test

image belongs. The proposed AMP model has a closed-

form solution that is very efficient to compute. Further-

more, as shown in Figs. 1(b) and 1(d), our semantic man-

ifold based AMP ZSL algorithm can be used in conjunc-

tion with any existing semantic relatedness or semantic em-

bedding based ZSL method given any semantic embedding

space, because different methods and spaces can be used to

compute the graph connectivity and transition probabilities

between nodes on the same semantic graph.

Our contributions are three-folds: (1) We propose a man-

ifold representation of a semantic embedding space using

a semantic graph of object class prototypes for exploring

a richer semantic distance in ZSL. (2) A novel Absorbing

Markov chain Process (AMP) is formulated on the seman-

tic graph which leads to a closed-form efficient ZSL algo-

rithm. (3) The proposed semantic manifold and AMP algo-

rithm improve upon and seamlessly unify various existing

ZSL learning algorithms and different semantic embedding

spaces. Extensive experiments on both the large scale Ima-

geNet dataset [5] and the widely used Animal with Attribute

(AwA) dataset [15] show that our model significantly out-

performs the state-of-the-arts.

2. Related Work

Existing ZSL methods differ in the semantic spaces used

and how the knowledge is transferred from the seen to un-

seen object classes. Despite its earlier dominance, attribute

based embedding spaces [16, 23, 8, 7, 1, 12] are giving

away to semantic word vector based spaces [22, 29, 10, 11]

due to the latter’s advantage for scalability. This is because

whilst the primary objective of ZSL is to solve the large

scale learning problem without exhaustive labelling of data,

manually defining an attribute ontology for each and every

object class does not scale well.

Given a semantic space, either a visual feature semantic

embedding approach or a n-way seen class classifier based

semantic relatedness mapping strategy can be adopted, with

the former being more popular than the latter. Examples of

the semantic embedding (SE) strategy are direct attribute

prediction (DAP) [16] and its variant [10]. Recently Fu et

al. [11] pointed out that this strategy however suffers from

a projection domain shift problem – the visual feature map-

ping (embedding) learned from the seen class data may not

generalise well to the unseen class data, which is an implicit

assumption for semantic embedding based ZSL. They pro-

posed a transductive multi-view embedding framework to

solve this problem. Our semantic manifold can inherently

solve the projection domain shift problem. This is because

we measure a manifold constrained semantic graph distance

rather than a direct cosine distance between the embedded

visual feature vectors and the unseen class prototypes. Crit-

ically, our method is not transductive, that is, we do not as-

sume that the full test dataset containing unlabelled visual

examples of all unseen classes is available for learning.
In contrast, the semantic relatedness (SR) based ZSL

strategy has been less popular [15, 21], partly due to the

task of learning a good n-way probabilistic classifier being

formidable. However, recent works have reported impres-

sive classification accuracy over 1,000 classes [14] using

deep convolutional neural network learned classifiers. This

advance on deep learning is removing the barrier to adopt-

ing the semantic relatedness approach to ZSL, given that

such a strategy is potentially more advantageous over the

semantic embedding approach [15, 21]. In this work, we

provide a unified framework to enable both strategies to be

combined in our AMP algorithm, resulting in an overall bet-

ter model as demonstrated in our extensive experiments.
We should point out that the idea of exploiting the class

label relationship as a graph is not entirely new, e.g. the

WordNet has been exploited widely for transfer learning in

visual recognition [26]. More recently, a specific type of

label relation graph, the Hierarchy and Exclusion (HEX)

graph [4] is employed for large scale visual recognition

learning tasks including ZSL. The HEX is a hierarchical

graph of class labels, while our semantic graph is an undi-

rected graph of class prototypes in a semantic embedding

space, designed for representing the manifold structure in

that space. To our best knowledge, this work is the first

attempt to explore the manifold structure of and derive a se-

mantic graph distance for a semantic embedding space. Our

experiments show that our model significantly outperforms

the HEX graph model of [4] on the ZSL task.

3. Methodology

3.1. Problem Definition

Let Y = {y1, . . . , yp} denotes a set of p seen class labels

and Z = {z1, . . . , zq} a set of q unseen class labels. These

two sets of labels are disjoint, i.e. Y ∩ Z = ∅. We are

given a labelled training dataset XY = {(xj , yj)} where

xj is a d-dimensional feature vector extracted from the j-

th labelled image and yj ∈ Y . In addition, a test dataset

XZ = {(xi, yi)} is provided where xi is a d-dimensional

feature vector extracted from the i-th unlabelled test image



and the unknown yi ∈ Z . The goal of ZSL is to learn a

classifier f : X → Z to predict yi.

3.2. Semantic Embedding Space

For any ZSL method, the similarity or semantic relat-

edness between seen and unseen classes needs to be com-

puted. This is typically achieved by a semantic embedding

space. In this work, two of the most widely used spaces are

considered: attribute space and semantic word vector space.

For an attribute space, a manually defined attribute ontology

is required, with which each class label is represented in the

attribute space (its dimension is the number of attributes).

An attribute vector is denoted as yA
j . For a word vector

space, similar to [29, 10, 11], we adopt the skip-gram text

model introduced in [19, 20]. This language sentence model

learns from a large text corpus to represent each English

word (and bi-gram) as a fixed-length continuous embedding

vector yV
j , so that semantically related words (e.g. horse

and zebra) are adjacent in this embedding space.

The semantic space is used for two purposes in a ZSL

learning framework: (1) To measure the semantic related-

ness between different classes by computing a distance be-

tween their corresponding prototypes, and (2) to measure

the semantic similarity between a test image and a class pro-

totype. For this purpose, the visual feature vector xi needs

to be projected into the semantic space and represented as

xA
i or xV

i depending on which embedding space is used.

This projection can be realised by classification [15] or re-

gression [29, 10, 11].

3.3. Semantic Graph

Next we describe how to represent the manifold structure

of a semantic embedding space by constructing a graph.

A semantic graph is constructed as a k-nearest-neighbour

graph using the seen and unseen class prototypes. On the

semantic graph, each class prototype (regardless seen or un-

seen) will have a corresponding graph node which is con-

nected with its k most similar (semantically related) other

classes. This definition of similarity is based on a distance

between two class prototypes in the semantic embedding

space. Note, the unseen class nodes are only connected with

the seen class nodes. The reason is explained below (Sec.

3.4). The edge weight wij of the semantic graph is the simi-

larity between two end nodes of an edge. More details about

the semantic graph construction are given in Sec. 4.

3.4. Absorbing Markov Chain Process

We define an absorbing Markov chain process on the se-

mantic graph as follows. Each unseen class node is viewed

as an absorbing state and each seen class node is viewed as

a transient state, whilst the transition probability from class

node i to class node j is pij = wij/
∑

j wij , i.e. the nor-

malised similarity. An absorbing state means that for each

unseen class node i, we have pii = 1 and pij = 0 for i 6= j.

Note that since all of the unseen class nodes are absorbing
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Figure 3. After incorporating a test image into a semantic graph,

zero-shot learning can be viewed as an extended absorbing

Markov chain process (AMP) on the graph.

states, any path generated by the absorbing Markov chain

process will not include more than one unseen class node.

We re-number the class nodes (as states in a Markov pro-

cess) so that the seen class nodes (transient states) come

first. Then, the transition matrix P of the above absorbing

Markov chain process has the following canonical form:

P =

(

Qp×p Rp×q

0q×p Iq×q

)

. (1)

In Eq. (1), Qp×p describes the probability of transition-

ing from a transient state (seen class) to another, Rp×q de-

scribes the probability of transitioning from a transient state

(seen class) to an absorbing state (unseen class). In addi-

tion, 0q×p and the identity matrix Iq×q denote that the ab-

sorbing Markov chain process cannot leave the absorbing

states once it arrives.

3.5. Zero-shot Classification

For zero-shot learning, i.e. predicting the label yi of an

unseen test image xi, we first need to incorporate xi into the

semantic graph. This is followed by applying an extended

absorbing Markov chain process (see Fig. 3). In order to

incorporate a test image xi into the semantic graph, it is

connected with a selected set of K seen class nodes. There

are two ways by which the seen class nodes are selected for

connection, depending on whether a n-way seen class clas-

sifier plus semantic relatedness (SR) strategy or a visual fea-

ture semantic embedding (SE) strategy is adopted (Sec. 2).

More specifically, if the former is taken, we utilise the train-

ing dataset XY to learn a n-way probabilistic classifier in

the visual feature space for seen classes. For a test image

xi /∈ XY , the classifier can provide a probability pr(yj |xi)
of image xi belonging to the seen class yj . If the second

strategy is adopted, the test image xi is projected into the

embedding space and becomes xA
i or xV

i (Sec. 3.2) and the

seen class nodes with the K smallest distance are selected.

More precisely, the similarity between xA
i or xV

i and the



prototype of the seen class j, yA
j or yV

j can be computed

as sij . Then we normalise the similarity as the probabil-

ity pe(yj |xi) = sij/
∑

j sij . The node representing image

xi is then connected to the seen classes with the K highest

probabilities. In addition, our framework combines these

two strategies by averaging the probability pr from seman-

tic relatedness and the probability pe from semantic embed-

ding, which gives pc = (pr+pe)/2. Given the probabilities,

we have Ti = [tij ]1×p as a row vector of p elements. Each

element is tij = p(yj |xi) which can be computed using ei-

ther pr, pe or pc depending on whether a SR, SE, or SR+SE

strategy is adopted.

Each test image xi is incorporated into the semantic

graph as a transient state. Specifically, for xi, there is no

stepping in probabilities and the Markov process can only

step out from xi to other seen class nodes. The stepping out

probabilities from xi to seen class nodes are Ti, which are

the probabilities computed using the seen class classifiers

or embedding as described above. The transition matrix P̃
of the extended absorbing Markov chain process have the

following canonical form:

P̃ =





Qp×p 0p×1 Rp×q

(Ti)1×p 01×1 01×q

0q×(p+1) Iq×q



 . (2)

In the meanwhile, the extended transition matrix on all tran-

sient states, including all seen class nodes and one extra test

image node xi, are written as

Q̃(p+1)×(p+1) =

(

Qp×p 0p×1

(Ti)1×p 01×1

)

, (3)

and the extended transition matrix between transient states

and absorbing states should be

R̃(p+1)×q =

(

Rp×q

01×q

)

. (4)

In the extended semantic graph, it is obvious that if the test

image xi is close to one unseen class node, e.g. zj , on the

semantic graph, the absorbing Markov chain process that

starts from xi will have a high probability to be absorbed at

zj . Thus, the probability of xi being labelled as the unseen

class label represented by zj should be high. Note that this

absorbing probability is determined solely by the structure

of the semantic manifold.

Formally, the absorbing probability bij is the probability

that the absorbing Markov chain will be absorbed in the ab-

sorbing state sj if it starts from the transient state si. The

absorbing probability matrix B̃ = [bij ](p+1)×q can be com-

puted as follows:

B̃ = Ñ × R̃, (5)

in which Ñ is the fundamental matrix of the extended ab-

sorbing Markov chain process and is defined as follows:

Ñ(p+1)×(p+1) = (I−Q̃)−1 =

(

Ip×p −Qp×p 0p×1

−(Ti)1×p 1

)−1

.

(6)

We use the following block matrix inversion formula to

compute Ñ .

(

A B
C D

)−1

=

(

E F
G H

)

, (7)

in which we have
{

G = −(D − CA−1B)−1CA−1

H = (D − CA−1B)−1.
(8)

Since we only care about the absorbing probabilities for

the absorbing chain process starting from the test image

node xi, we only need to compute the last row of B̃, de-

noted as B̃p+1,· for xi (xi corresponds to the last transient

state in the extended canonical form in Eq. (2)). In particu-

lar, we can apply the above block matrix inversion formula

to compute the last row of Ñ as

Ñ(p+1),· =
(

(Ti)(I −Q)−1, 1
)

1×(p+1)
(9)

and then we further compute B̃p+1,· as

B̃p+1,· = (Ñ(p+1),·)× R̃ = Ti × (I −Q)−1R. (10)

For the whole test dataset with n images, we use a ma-

trix Sn×q to store the computed absorbing probabilities, in

which the i-th row Si,· of S equals to the absorbing prob-

abilities of xi. If we stack the results of all test images

together, we have the final matrix S as follows:

S = T (I −Q)−1R. (11)

In Eq. (11), T is a n× p matrix and (I −Q)−1R is a p× q
matrix that is only related to the semantic graph structure

and can be pre-computed. The only dimension variable in

Eq. (11) is the number of test images n. Therefore, our

method is linear with respect to the number of test images.

Moreover, since the seen class number p and unseen class

number q are usually much smaller than the instance num-

ber, the matrix (I−Q)−1R can be computed very efficiently

and computed only once.

Finally, for the test image xi, we assign it to the unseen

label that has the maximum absorbing probability when the

absorbing chain starts from xi. Finally, our ZSL classifer is

f(xi) = argmax
zj

Si,j (12)

Note, although we use the graph based formulation, un-

like [11] our AMP method is not a transductive method.



The semantic graph in our approach is only related to the

seen/unseen class prototypes. Once the semantic graph is

constructed, it is fixed and used in the subsequent zero-shot

learning process. In addition, it is noted in [11] that multi-

ple semantic embedding spaces contain complementary in-

formation thus should be combined for ZSL. This can be

easily achieved using AMP by averaging the similarity ma-

trices obtained on different spaces.

4. Experiments

4.1. Datasets and Settings

Datasets. Two datasets are chosen for our evaluations, Ima-

geNet and AwA. ImageNet [5] is a large scale image dataset

suitable for ZSL evaluation. In particular, we use the Ima-

geNet 2010 1K dataset, which consists of 1,000 categories

and more than 1.2 million images. We use the same train-

ing/test (seen/unseen) split as [18, 10] for fair comparison,

which gives 800 classes for training and 200 classes for test-

ing. Only a handful of previous works report results on Im-

ageNet, thus limiting our comparison. Therefore the AwA

(animals with attributes) dataset [15] is selected as the sec-

ond dataset, on which the majority of ZSL models proposed

so far have been tested. AwA provides 50 classes of animals

(30,475 images), and 85 associated class-level attributes.

Different from ImageNet, both attribute space and semantic

word space can be evaluated using the AwA dataset. AwA

also provides a defined seen/unseen split for ZSL with 10

classes and 6180 images held out as in [16].

Visual Features. On the ImageNet dataset, we pre-train a

deep convolutional neural network (CNN) using the training

dataset with 800 classes, following the model architecture in

[14]. After training, for each test image, the 4,096 dimen-

sional top-layer hidden unit activations (fc7) of the CNN are

taken as the features. On AwA, we also use the CNN feature

originally provided [28] as it has been shown recently to be

much more powerful than the low-level features originally

provided in [15].

Semantic Embedding Space. For the semantic embedding

space, semantic word vector space is used for both datasets.

We train the skip-gram text model [20, 19] on a corpus of

4.6M Wikipedia documents to form a 1000-D and a 100-

D word spaces for the ImageNet 2010 and AwA datasets

respectively. In addition, for AwA, each class label is rep-

resented as an 85D attribute vector in the attribute space.

The mapping/embedding of visual feature vector (4,096D)

into the 1000/100D word vector space is achieved using the

deep CNN model DeViSE [10]. On ImageNet 2010, we

set the margin = 0.1 as in [10], and on AwA, we set the

margin = 1. For learning the deep DeViSE model, we use

Stochastic Gradient Descent (SGD) with the step parameter

set to 0.05 as in [10] on both ImageNet and AwA. When

the sementic relatedness strategy is adopted, a n-way seen

class classifier needs to be learned from the training data.

We use the Liblinear toolbox [6] to train a L2-regularised

multi-class logistic regression classifier as in [16].

Semantic Graph. We use the k-nearest-neighbour to set

up the semantic graph (Sec. 3.4). At first, the seen class

prototypes are used to set up a semantic subgraph, in which

we use k = 10 on ImageNet and k = 2 and k = 3 respec-

tively for attribute and word2vec semantic space on AwA.

Then, the unseen classes are connected into the seen se-

mantic subgraph and each unseen class is connected to its

k-nearest seen class prototypes, in which we set k=20 on

ImageNet and k=8 and k=4 respectively for attribute and

word vector semantic space on AwA. For the attribute and

word vector prototypes, we compute the cosine similarity

as the edge weights. Finally, each test image is connected

to K nearest seen classes (Sec. 3.5). We set K=10 for Im-

ageNet and K=4 and K=10 respectively for attribute and

word vector semantic space on AwA. The effects of vary-

ing the values of these free parameters will be evaluated in

Sec. 4.4.

4.2. Evaluations on ImageNet

Method Result

ConSE [21] 28.5%

DeViSE [10] 31.8%

Mensink et al. [18] 35.7%

Rohrbach et al. [25] 34.8%

PST [24] 34.0%

Our AMP (SR+SE) 41.0%

Table 1. The hit@5 classification accuracy of compared methods

on ImageNet 2010 1K.

Competitors. Our method is compared against five state-

of-the-arts alternatives. They are either semantic related-

ness (SR) based or semantic embedding (SE) based, while

our method is based on a combination of semantic related-

ness and embedding (SR+SE). More specifically, Norouzi

et al.’s convex semantic embedding ZSL (ConSE) [21] is

SR based. As in our method, it learns a n-way probabilis-

tic classifier for the seen classes. The results for ConSE is

based on our own implementation so the same n-way clas-

sifier is used. In contrast, DeViSE [10] and Mensink et al.’s

metric learning based method [18] project the 4,096 CNN

features into the 1,000D word vector space. Like [11], PST

is a transductive ZSL method, which learns using the full

test dataset. In contrast, other four methods, including our

AMP, only use only the training dataset for model learning.

Comparative Results. The performance of different meth-

ods, evaluated using the flat hit@5 classification accuracy1

as in [18, 10, 25], is compared in Table 1. The result shows

that our method clearly outperforms the state-of-the-art al-

1Each image is deemed to be classified correctly if the correct label is

among the top 5 predicted labels.
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Figure 4. Qualitative results on ImageNet. For each image, the top 5 zero-shot predictions of our AMP and nearest neighbour (NN)

classifier, both trained on ImageNet 2010 800. Predictions are ordered by decreasing score, with correct predictions in bold.
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Figure 5. Evaluation of the contributions of individual novel com-

ponent of our model on ImageNet.

ternatives. Some qualitative results can be seen in Fig. 4.

This superior performance can be explained by our seman-

tic manifold based distance metric algorithm and the ability

to combine both the SE and SR strategies in a unified frame-

work. Next we investigate further how each of the these two

novel components contributes to the overall performance.

Contributions of Individual Novel Components. First,

we compare in Fig. 5 the performance of our method with

and without the AMP algorithm under semantic related-

ness (SR), semantic embedding (SE) and the combination

of both. Note, our SR model without AMP is equivalent

to the ConSE model, and our SE model without AMP is

equivalent to the DeViSE model. It can be observed that

(1) Both a semantic relatedness (i.e. ConSE) or semantic

embedding (i.e. DeViSE) based method can benefit from

our AMP framework. Interestingly, after incorporating our

AMP, the result of SR+AMP (SR with AMP) can achieve

36.5%, which is already higher than the state-of-the-art re-

sults on ImageNet 2010, i.e. DeViSE’s 31.8%, Mensink et

al.’s 35.7% and Rohrbach et al.’s 34.8%. When we use our

AMP to replace the nearest neighbour in DeViSE (based on

cosine distance), the performance has an almost 10% im-

provement. Some qualitative results are shown in Fig. 4. It

shows that compared to the cosine distance in nearest neigh-

bour ZSL, our semantic graph distance is much more mean-

ingful (e.g. not only the correct labels are predicted, closely

related labels are also ranked high). (2) After we combine

the SR and SE settings together, we can achieve our fi-

nal result 41.0%. However, without AMP (SE+SR without

AMP), the result of 30.2%, obtained by score level fusion

is even worse then SE (31.8%) without AMP alone. This

result suggests that the graph level fusion of both strategies

is superior to the simple score level fusion which may have

a negative effect. In conclusion both the semantic manifold

based distance metric and the combination of SE and SR

strategies contribute to our superior performance.



Method S. Space Feature Result

IAP [15] A L/C 42.2/44.5

DAP [15] A L/C 41.4/53.2

DS [26] W/A L/C 35.7/52.7

AHLE [1] A L 43.5

Yu et al. [31] A L 48.3

Jayaraman et al. [13] A L 43.0

TMV-BLP [11] A+W L 47.1

Deng et al. [4] A L/C 38.5/44.2

Our AMP (SR+SE) A+W C 66.0

Table 2. Results on AwA in classification accuracy (%). We com-

pare with the state-of-the-arts under different semantic embedding

spaces including word vector (W) and visual attribute (A). Two

types of features are used: low-level (L) and CNN (C) features.

4.3. Evaluations on AwA

Competitors. Compared to ImageNet, far more published

results on AwA are available, as compared in Table 2. Apart

from taking either a SR or SE based strategy, they also dif-

fer in the semantic embedding space used, as both the at-

tribute and word vector spaces are available for AwA. Both

[11] and our AMP model can exploit both spaces. How-

ever only our method is able to combine both the SR and

SE strategies. These models also differ in the feature space

used. The dataset provided low-level features (L) were used

in most studies. However, more recently the CNN features

(C) have been used [4]. Moreover, TMV-BLP [11] is trans-

ductive thus requires all test data for learning, and Yu et al

[31] uses additional human annotations.

Comparative Results. Table 2 shows that the best re-

sult is obtained using the proposed AMP (SR+SE) method,

with two observations: (1) In general using the CNN fea-

tures leads to better performance. Given CNN features, our

model outperforms significantly the other existing methods.

This is partly because we use the deep CNN model directly

to learn the projection rather than just extract the features.

(2) Our performance is much better than that of Deng et

al. [4] which exploits a semantic label graph. This shows

that exploiting a graph based manifold modelling of the se-

mantic embedding space is clearly more beneficial than in

the label space. Note that our results are obtained using a

manifold modelled by 50 class prototypes in AwA, which is

clearly insufficient to capture the rich intrinsic structure of

a semantic embedding space. We thus expect the result to

be further improved when more seen classes are added.

Contributions of Individual Novel Components. Similar

to the evaluation in the previous section on ImageNet, In

Fig. 6, we evaluate the contribution of the AMP algorithm,

and the combination of both SR and SE strategies. Similar

conclusions can be drawn, that is, both components help

and naive score level fusion of both strategies is inferior to

our coherent graph based fusion.
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Figure 6. Evaluation of the contributions of individual novel com-

ponent of our model on AwA.

4.4. Further Evaluations
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Figure 7. The performance (top-5 results in %) of our AMP meth-

ods with respect to different settings of the parameter K.

Parameter sensitivity. We evaluate the effect of setting

different values of K, i.e. the number of top similar seen

classes that a test image will connect, on ImageNet. From

Fig. 7, it is evident that different versions of our method

are all stable for different K value. Similar observation is

made for the other free parameter k, i.e. how many class

prototypes are connected with each node in the graph.

Running time. On a Tesla K20m GPU server, it takes on

average 5.13 milliseconds to classify a single test image on

ImageNet. This includes 5.08 milliseconds for mapping the

image into the word space using DeViSE. Our model is thus

extremely efficient.

5. Conclusion

We have introduced a novel zero-shot learning approach

based on formulating a semantic manifold distance. We

proposed an absorbing Markov chain process for ZSL clas-

sification with efficient closed-form solution. Importantly

the proposed a framework enables seamless fusion of ex-

isting semantic relatedness based and semantic embedding

based methods for ZSL. We have shown experimentally that

our method outperforms the state-of-the-arts methods for

ZSL on widely used benchmarks.
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