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Abstract

Recent advances in object detection have exploited ob-
ject proposals to speed up object searching. However, many
of existing object proposal generators have strong local-
ization bias or require computationally expensive diversi-
fication strategies. In this paper, we present an effective
approach to address these issues. We first propose a sim-
ple and useful localization bias measure, called superpixel
tightness. Based on the characteristics of superpixel tight-
ness distribution, we propose an effective method, namely
multi-thresholding straddling expansion (MTSE) to reduce
localization bias via fast diversification. Our method is es-
sentially a box refinement process, which is intuitive and
beneficial, but seldom exploited before. The greatest benefit
of our method is that it can be integrated into any exist-
ing model to achieve consistently high recall across various
intersection over union thresholds. Experiments on PAS-
CAL VOC dataset demonstrates that our approach improves
numerous existing models significantly with little computa-
tional overhead.

1. Introduction
In recent years, object proposal generation [3, 4, 6, 7,

8, 15, 16, 17, 18, 19, 20, 24] has become a promising
technique for many vision recognition tasks, especially for
class-specific object detection. Instead of handling with
tremendous amount of bounding boxes in sliding windows
fashion, object proposal generation selects much fewer can-
didate bounding boxes (typically from hundreds to a few
thousands per image) that cover most of the objects in the
image. This technique benefits object detection from two
aspects: speeding up the computation by reducing the can-
didate bounding boxes and improving the detection accu-
racy by allowing the usage of more sophisticated learning
machinery. Recent detection models using object propos-
als [12, 22] have shown superior performance over sliding
window based methods [10].

Object proposals are represented in the form of segment
or bounding box. In this paper, we focus on generating

bounding box proposals, which is particularly useful for
class-specific object detection. We propose an effective ap-
proach to improve the quality of object proposals.

Our work is motivated by the following problems. First,
most models [3, 7, 24] that directly generate bounding
box proposals suffer from strong localization bias, which
means they can hardly achieve high recall consistently
across various intersection over union (IoU) thresholds.
Second, diversification strategies required by most mod-
els [6, 8, 15, 18, 19, 20] are commonly computationally
expensive. To achieve high accuracy, many models have
to utilize multiple segmentations to diversify object propos-
als, at the cost of much more computations. Our solution
for these issues is based on two main contributions:
• A measurement for localization bias, which enlightens

a direction to improving the quality of object proposals
(Sect. 3.1).
• A box refinement method, namely Multi-Thresholding

Straddling Expansion (MTSE), which effectively
reduces localization bias via fast diversification
(Sect. 3.2).

Figure 1 illustrates the overall pipeline of our method.
Our key idea is to utilize superpixels straddling to refine
bounding boxes. Given an image and a set of initial bound-
ing boxes, we first align bounding boxes with potential
boundaries preserved by superpixels. Then we perform
multi-thresholding expansion guided by superpixels strad-
dling for each bounding box. Such a simple procedure ben-
efits object proposals from numerous aspects: 1) significant
reduction in localization bias, 2) fast diversification effect
requiring only one segmentation, and 3) seamless integra-
tion into any existing model to improve their accuracy with
little computation overhead.

We evaluate our method on PASCAL VOC2007. Ex-
periments show that our method effectively improve exist-
ing models by a large margin. In particular, when using
2000 proposals, we achieve the highest recall at intersec-
tion over union threshold of 0.5 and 0.8 with 94.2% and
63.8%, respectively. In addition, the proposed MTSE takes
only 0.15s, thus bringing little computational overhead to
existing models. (Sect. 4).
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(a) Input (b) Initial boxes (c) Box Alignment (d) δ = 0.7 (e) δ = 0.3

Figure 1. Illutration of our MTSE method using several examples. (a) Input images. (b) Initial bounding boxes. (c) Boxes after alignment.
(d-e) Proposals after straddling expansion by setting the threshold δ to 0.7 and 0.3, respectively. Superpixels wholly enclosed by a bounding
box are indicated in yellow. Best viewed in color.

2. Related Works

According to the pipeline for generating object proposal,
most object proposal generators can be classified into two
categories: objectness-based and similarity-based.

Objectness-based models [2, 3, 7, 24] focus on the de-
signing of objectness measurement. Such methods try to
directly distinguish objects from amorphous background
stuff. To this end, a common pipeline is to first initial-
ize a pool of candidate bounding boxes, then sort them
with an objectness ranking model and output the top few
proposals. To estimate the objectness score, various cues
have been exploited, such as saliency, color contrast, edge
density, superpixels straddling, location and size [3], bina-

rized normed gradients [7], and edge maps [24]. Although
these approaches are efficient in computation, we observe
two drawbacks. The first is the lost in localization accu-
racy caused by the discrete sampling of initial bounding
boxes. Thus most objectness-based methods have low recall
at high intersection over union threshold. In this paper we
will show that our MTSE method can significantly improve
recall at high IoU thresholds for these methods. The second
is the limited discriminant ability of exploited properties of
generic objects. This can easily result in localization bias.
For example, the recently proposed fast BING feature [7]
has achieved high recall at low IoU threshold, but its local-
ization is quite cursory. We owe this defect to the weak dis-
criminativeness of simple gradient feature as it is inadequate
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to capture the essential properties of generic objects [23].
However, our method can lessen this bias by diversifying
the proposals via multiple expansions. The localization ac-
curacy can be significantly improved by our MTSE method,
which will be shown in the experiments (Sect. 4).

Similarity-based models [4, 5, 6, 8, 15, 17, 18, 19, 21,
20] address the problem by merging similar regions based
on diverse cues. Instead of directly designing/learning in-
variant features from generic objects, which is a very tough
problem, these approaches are relatively easier and also ef-
fective. To this end, a common pipeline is to first initialize
a set of seed regions (typically using superpixels [1, 11]),
then merge similar regions to generate segment proposals.
For regions similarity measurement, diverse and comple-
mentary cues including color, texture, location and size, are
usually considered. For regions merging, Selective Search
(SS) [20] performs a hierarchical grouping algorithm; Ran-
domized Prim (RP) [18] generates random partial spanning
trees using superpixel connectivity graph; Multiscale Com-
binatorial Grouping (MCG) [4] utilizes hierarchical seg-
mentations and groups multiscale regions into proposals
by exploring combinatorial space; Rantalankila et al. [19]
propose a method combining locally superpixels merging
and global graph cut to generate proposals; Geodesic Ob-
ject Proposals (GOP) [17] computes a signed geodesic dis-
tance transform for each foreground-background mask and
identifies certain critical level sets as object proposals. In
addition, some other models [6, 8, 15] extract object pro-
posals by solving a set of figure-ground segmentation prob-
lems. A common approach to improving proposal quality
is to utilize multiple segmentations in different scales and
colorspaces, which, however, requires more computations
compared with objectness-based methods. In our work,
we introduce multiple straddling expansions as opposed to
multiple segmentations to diversify object proposals. Our
method only requires one segmentation and the expansion
algorithm is very fast, thus saving computational cost.

Our approach utilizes similar superpixels straddling fea-
ture as in [3], but we use it to guide box refinement instead
of objectness measurement. In the work of [3], tightness
is introduced to score bounding boxes. Boxes are likely to
contain an object if they tightly enclose a set of superpixels.
Similar idea was exploited in [24] which operates on edges.
However, such measurement can easily result in localiza-
tion bias. We prefer multiple degrees of superpixel tightness
instead. We will show that diverse superpixel tightness can
be achieved via multi-thresholding superpixel straddling ex-
pansion.

Box refinement is seldom explored in prior objectness-
based methods [3, 7]. However, for these methods, bound-
ing boxes are usually initialized using regular sampling for
which it is hard to cover object precisely. Therefore, box
refinement is indispensable to obtain accurate localization.

Edge Boxes [24] has proposed to refine top-ranked bound-
ing boxes using a greedy iterative local search after initial
scoring. Such refinement is performed in a fixed search-
ing step, whereas our approach utilizes superpixels to guide
box refinement and requires no scoring function. In fact,
we will show that our box refinement method can further
improve Edge Boxes.

3. Methodology
3.1. Superpixel Tightness: a Localization Bias In-

dicator

We observe that most objectness-based methods can
hardly achieve stable recall for a wide range of intersection
over union thresholds (i.e. strong localization bias). By con-
trast, similarity-based methods have better balance between
recall and localization accuracy, as shown in Figure 5. To
understand such bias, we introduce an indicator, superpixel
tightness (ST), which measures how tight a bounding box
fits around an object. Given a set of superpixels Sθ obtained
using [11] with segmentation parameter θ, we define ST of
a bounding box b as the proportion of the area of superpixels
wholly enclosed by box b to the area of b. Formally,

ST (b) =
∑
s∈Sθ

|s| · δ(|s| − |s ∩ b|)
|b|

, (1)

where δ(x) is the Dirac delta function which is zero every-
where except at x = 0. For each superpixel s, we first com-
pute the area |s ∩ b| of its intersection with box b, then sum
up the number of pixels contained in the superpixels entirely
inside b. ST (b) is 0 if none of the superpixels is wholly en-
closed by b. Such ST measure is similar to the superpixels
straddling cue introduce by Alexe et al. [3]. The differ-
ence is that our ST measure doesn’t consider superpixels
straddling the box. Also, we utilize superpixels instead of
contours as in Edge boxes [24] because superpixels provide
a useful guidance in subsequent expansion process, to be
introduced in next section.

The superpixel tightness measure is able to indicate the
localization bias of object proposal generators. For demon-
stration, we first plot the distributions of superpixel tight-
ness for ground truth objects and background regions re-
spectively on PASCAL VOC2007 dataset in Figure 2(a).
Background regions are randomly sampled in sliding win-
dow manner and have intersection over union overlap with
ground truth objects less than 0.5. The figure clearly shows
that objects possess diverse degrees of superpixel tightness
while most background stuff incline to low tightness. Based
on this observation, a good object proposal generator is sup-
posed to produce bounding boxes with distribution of su-
perpixel tightness similar to that of ground truth objects.
However, currently most objectness-based methods fail to
make it because of inadequate objectness hypotheses. To
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Figure 2. Distributions of superpixel tightness for (a) ground truth
objects and background regions on PASCAL VOC2007, and (b)
1000 object proposals generated by several objectness-based mod-
els (in dashed lines) and similarity-based models (in solid lines).
The values at ST = 0, which imply the proportion of bounding
boxes that contain no superpixels entirely, are ignored in the fig-
ures for clarity. Best viewed in color.

show this, we plot the ST distributions for proposals gen-
erated by recent state-of-the-art methods in Figure 2(b).
For objectness-based methods, we test OBJ [3], BING [7],
EB50 (Edge Boxes 50) and EB (Edge Boxes 70) [24];
for similarity-based methods, we test CPMC [6], RP [18],
SS [20] and MCG [4]. We found that all objectness-
based methods have strong bias to low tightness while most
similarity-based methods spread more evenly across various
tightness. This accords with their bias in localization accu-
racy. In other words, we can use ST distribution to measure
the bias in localization accuracy.

The characteristics of ST distribution imply a direction
to improving the quality of object proposals. We should
keep in mind that high-quality object proposals should also
have low bias (high diversity) in ST distribution. To this
end, a straightforward approach is to refine object proposals
to obtain higher diversity.

3.2. Multi-Thresholding Straddling Expansion

To generate bounding box proposals with diverse de-
grees of superpixel tightness, we introduce a box refinement
method using superpixels straddling. We utilize superpixel
to guide box refinement because its key property is preserv-
ing object boundaries. We first define the straddling degree
of a superpixel s with regard to a bounding box b as

SD(s, b) =
|s ∩ b|
|s|

. (2)

It indicates the proportion of the superpixel’s area |s∩ b| in-
side b to the superpixel’s area |s|. Given an initial bounding
box b, we expand it according to the straddling degrees of
superpixels. Formally, we define straddling expansion with
a threshold δ as the following refinement:

Sδ(b) = Sin(b) ∪ {s ∈ Sθ|SD(s, b) ≥ δ}, (3)

where Sin(b) = {s ∈ Sθ|SD(s, b) = 1} is the set of su-
perpixels entirly inside b. A new box b̂ is obtained by com-
puting the minimum box enclosing Sδ(b). Box b is possibly
enlarged after the refinement. Figure 1 shows some exam-
ples of straddling expansion by setting δ to different values.
Large value of δ produces a minor variant of b, thus pos-
sibly leading to a more precise location if b has a coarse
overlap with an object. Small value of δ produces a distinct
box, which can increase the possibility of jumping out of a
“local minima” for inaccurate box.

Straddling expansion is able to reduce the bias of object
proposals by diversifying superpixel tightness. We plot the
ST distributions after applying straddling expansion to the
bounding box proposals generated by three baseline mod-
els: BING [7], OBJ [3] and MCG [4], in Figure 3. It clearly
shows that the ST distributions for small δ’s are more dis-
tinct from the baseline’s distribution than those for large δ’s.
For example, the ST distributions for BING and OBJ have
major proportions in low values. After applying straddling
expansion, we obtain larger proportions in high values of
superpixel tightness. Similar results are observed for MCG,
which is a similarity-based method. As MCG itself gener-
ates high-quality object proposals and has little bias in lo-
calization, straddling expansion on its proposals yields less
distinct ST distribution.

Instead of choosing a single value of δ, we use multiple
δ’s to perform straddling expansion, which we call multi-
thresholding straddling expansion (MTSE). As shown in
Figure 3, combining multiple thresholds can further obtain
higher diversity. By this means, multiple bounding boxes
are generated for each initial bounding box.

The unique benefit of our box refinement method is that
it can naturally generate bounding boxes aligning with ob-
ject boundaries preserved by superpixels. This property
differentiate our method from Edge Boxes [24] which per-
forms a fixed-step local search. Moreover, unlike similarity-
based methods, straddling expansion doesn’t require ex-
tracting low-level features (e.g. color, texture) to measure
regions similarity. Only straddling degrees are computed
for superpixels, thus the expansion process is very efficient.

3.3. Box Alignment

As a set of initial bounding boxes is required for MTSE,
naturally we can directly feed the bounding boxes generated
by an existing model into MTSE. However, the bounding
boxes initialized in such way don’t always align with the
object boundaries. For example, the BING proposal [7] is
essentially a subset of the sliding windows, which are uni-
formly distributed with fixed sizes and aspect ratios, thus
such bounding boxes possibly have bad alignment with ob-
ject boundaries. Therefore, we propose to align bounding
boxes before straddling expansion.

Since the exact object boundaries are unknown, we adopt
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Figure 3. Distributions of superpixel tightness before and after applying straddling expansion for three baseline models: (a) BING [7], (b)
OBJ [3], and (c) MCG [4]. The threshold δ is set to five values individually. A combination of multiple δ’s achieves the least bias in the
ST distribution. Best viewed in color.

an approximation by aligning bounding boxes with poten-
tial object boundaries preserved by superpixels. We say a
bounding box b aligns with superpixels Sθ if it is the min-
imum box enclosing a subset of the superpixels. Given an
initial bounding box b, we first compute its inner set and
straddling set, which are defined as

Sin = {s ∈ Sθ|SD(s, b) = 1},
Sst = {s ∈ Sθ|0 < SD(s, b) < 1}.

(4)

Let b(S) denote the minimum box enclosing the set of
superpixels S , and O(bi, bj) denote the intersection over
union overlap between bi and bj . Then we sort the strad-
dling set Sst according to the intersection over union over-
laps, so that its elements {s1, ...sK} satisfy

O(b(Sin ∪ {si}), b) ≥ O(b(Sin ∪ {sj}), b),∀i < j. (5)

The box alignment process is to expand the bounding
box from b(Sin), which is the one enclosing the inner set,
to the one which is the closest to the given box b, by greedily
adding in superpixels from the sorted straddling set. By this
means, we obtain an aligned bounding box which has the
highest overlap with the given bounding box. The specific
procedure is summarized in pseudo-code in Algorithm 1.

Some examples are shown in the third column of Fig-
ure 1. Box alignment has the capability of “dragging” some
coarse bounding boxes back to the main part of an object
(e.g. Row 1-3 in Figure 1). In some cases (e.g. Row 3 in
Figure 1), even the box alignment procedure is already suf-
ficient to generate an accurate bounding box.

3.4. Implementation

We compute a superpixel segmentation using [11] in Lab
colorspace at a single scale. Straddling expansion is per-
formed five times by setting the expansion threshold δ to

Algorithm 1 Box Alignment
Input: initial box b, superpixels Sθ
Output: aligned box b?

1: compute inner set: S ← Sin
2: obtain sorted straddling set: {s1, ...sK}
3: k ← 1
4: o← O(b(S), b)
5: ô← O(b(S ∪ {sk}), b)
6: while ô ≥ o do
7: o← ô
8: S ← S ∪ {sk}
9: k ← k + 1

10: ô← O(b(S ∪ {sk}), b)
11: end while
12: b? ← b(S)

0.1 × i, i = 1, 2, ..., 5, which are determined based on the
distribution of superpixel tightness.

As MTSE generates five sets of bounding boxes, to re-
duce redundancy, we rank each set by adding some random-
ness similar to [20]. Specifically, let b̂i be the bounding
box derived from the initial bounding box bi using a cer-
tain value of δ, we score b̂i with value i × R, where R is
a random number in range [0, 1]. A ranked list of bound-
ing boxes is obtained by sorting all the bounding boxes in
ascending order.

After ranking, we perform non-maximal suppression
(NMS) to obtain the final proposals. We found that by set-
ting the IoU threshold of NMS to 0.8 for objectness-based
models, and 0.9 for similarity-based models, respectively,
we can obtain high accuracy with a moderate budget of ob-
ject proposals.
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Figure 4. A Comparison of various variants of MTSE using regular sampling (RS) for box initialization. For the recall-overlap curves,
numbers next to labels indicate average recall and average number of proposals per image. All variants achieve significant improvement
over RS. The full MTSE (M-RS) performs slightly better than the single-thresholding approach (S-RS, by setting δ = 0.3) and the model
without box alignment (M-RS(w/o BA)). Best viewed in color.

4. Experiments
We evaluate our method on the PASCAL VOC2007

dataset [9]. The dataset contains 9,963 images from 20 cat-
egories with bounding box annotation for each object. All
experimental results are reported on the test set, which con-
sists of 4,952 images and 14,976 object instances.

Following [13, 14], we evaluate the quality of object
proposals using the recall metric. Recall is computed as
the fraction of ground truth objects covered above an IoU
threshold. Typically, we use α-recall to denote recall at
IoU threshold α. We use the recall-proposal curve to depict
accuracy at different proposal budgets and recall-overlap
curve to show the variation of recall over different localiza-
tion precision. In addition, to measure the overall accuracy
of proposals, we compute average recall (AR), which is the
area under “recall-overlap” curve in IoU range of 0.5 to 1.0.
AR is a comprehensive metric as Hosang et al. [13, 14] has
shown that AR is highly correlated with the performance of
class-specific object detectors.

4.1. Validation of the Proposed Approach

We first verify the effectiveness of the two components
of MTSE: box alignment and multi-thresholding expansion.
We simply use regular sampling (RS), which is also used
by [7, 24], to initialize a set of bounding boxes. Let M-
RS denote the corresponding model integrated MTSE. As
shown in Figure 4, single-thresholding straddling expan-
sion (S-RS) already achieves a good performance in all met-
rics. By combining box alignment and extending to multi-
thresholding approach, the accuracy is further improved.

As our method can be integrated into any object pro-
posal generation model, we verify its effectiveness on nu-
merous models. We test on objectness-based models in-

cluding OBJ [3], BING [7], EB50 (Edge Boxes 50), EB
(Edge Boxes 70) [24], and similarity-based models includ-
ing RP [18] and MCG [4]. Correspondingly, we name their
MTSE versions M-OBJ, M-BING, M-EB50, M-EB, M-RP,
M-MCG, respectively. Figure 5 reports their performances
using recall-overlap curve (using 1000 proposals), recall-
proposal curve (at IoU threshold of 0.8) and AR-proposal
curve.

Figure 5 clearly shows that MTSE successfully improves
objectness-based models to a similar performance level
with both high recall and accurate localization. In fact, for
OBJ [3], BING [7], and EB50 [24], which are typically
tuned for low overlap, our MTSE improves their recall at
high overlap significantly while preserving high recall at
low overlap. In particular, BING obtains the maximum
boost in AR using 1000 proposals (from 0.273 to 0.467).
Note that in our preliminary experiments, we have tried
utilizing multiple colorspaces and denser sliding windows
for BING but still obtained very low recall at high overlap
threshold. Therefore our MTSE offers both higher accuracy
and better diversity. For EB [24] which is tuned for IoU of
0.7, MTSE also obtains higher AR with little drop at IoU of
0.7.

Although most similarity-based models generate object
proposals with less bias, MTSE further improves their per-
formances. RP [18] is an expansion model based on su-
perpixels similarity, which has achieved a good balance be-
tween accuracy and efficiency, whereas we further lead it to
higher accuracy across almost all IoU thresholds. Similar
improvement is achieved for MCG, which is a state-of-the-
art model as reported in [13].
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Figure 5. Performances of numerous models (in dashed lines) and their improved versions (in solid lines) using MTSE. For the recall-
overlap curves, numbers next to labels indicate average recall and average number of proposals per image. Best viewed in color.

4.2. Overall Comparison

We extensively compare the improved models with more
state-of-the-art methods, including CPMC [6] and SS [20],
in Figure 6 and Table 1. Considering accuracy and effi-
ciency, we recommend three variants of MTSE integrated
models: M-RS, M-EB and M-MCG.

Accuracy. Figure 6 (top) presents recall-overlap curves
for three proposal budgets: 500, 1000 and 2000, which
are moderate for most object detection models and fair for
methods that generate distinct number of proposals. Results
show that M-MCG achieves the highest recall across almost
the whole range of IoU thresholds (except threshold above
0.9). In particular, M-MCG even beats EB at α = 0.7,
for which EB is specially tuned. We also consider the 50%-
recall, 80%-recall and average recall when varying the num-
ber of proposals. The statistics are summarized in Table 1.
M-MCG stands out in all metrics followed by MCG, M-EB
and SS. Specifically, when using less than 2000 proposals,
M-MCG achieves 94.2% recall at IoU of 0.5. For the strict
0.8 IoU threshold, M-MCG still has 63.8% recall. The only
flaw of M-MCG is that it has a slightly lower recall than

MCG when using less than 100 proposals, because we use
a very simple randomized approach to rank proposals.

Speed. Runtimes for all methods are presented in Ta-
ble 1. Timings of our methods are evaluated on a 3.5 GHz
i7 CPU. The runtime for MTSE is 0.15s, including 0.04s
for colorspace conversion, 0.1s for superpixel segmentation,
and 0.01s for proposal generation. Thus our MTSE brings
little computational overhead to any existing model. M-RS
is the second fastest model while being much more accurate
than the fastest BING at high IoU threshold. For applica-
tions desiring both accuracy and speed, M-EB is also a very
suitable alternative as it has comparable accuracy with M-
MCG at IoU threshold less than 0.8 while requiring 0.45s
only.

5. Conclusions

We propose a simple and effective approach to improve
the quality of object proposals. The characteristics of super-
pixel tightness distribution shed light on ways to improving
object proposals. The proposed multi-thresholding strad-
dling expansion takes advantage of boundary-preserving su-
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Figure 6. An overall comparison of three MTSE integrated models (in solid lines) with numerous state-of-the-art models (in dashed lines).
For the top row, numbers next to labels indicate average recall and average number of proposals per image. Best viewed in color.

Method
#prop = 500 #prop = 1000 #prop = 2000

Time(sec.)
AR 50%-recall 80%-recall AR 50%-recall 80%-recall AR 50%-recall 80%-recall

BING [7] 0.254 0.790 0.076 0.273 0.860 0.079 0.284 0.897 0.079 0.06
OBJ [3] 0.296 0.762 0.101 0.309 0.810 0.102 0.316 0.839 0.103 3
RP [18] 0.396 0.731 0.336 0.463 0.807 0.410 0.526 0.867 0.486 1

CPMC [6] 0.474 0.786 0.441 0.474 0.786 0.441 0.474 0.786 0.441 250
EB [24] 0.455 0.785 0.407 0.502 0.856 0.445 0.538 0.913 0.471 0.3
SS [20] 0.450 0.766 0.403 0.519 0.835 0.485 0.584 0.890 0.571 10

MCG [4] 0.488 0.816 0.448 0.535 0.861 0.505 0.577 0.898 0.557 30

M-RS 0.399 0.788 0.301 0.430 0.861 0.318 0.439 0.881 0.322 0.15
M-EB 0.457 0.816 0.416 0.515 0.878 0.493 0.564 0.920 0.559 0.45

M-MCG 0.518 0.856 0.494 0.577 0.909 0.568 0.626 0.942 0.638 30.2

Table 1. Results of MTSE integrated models compared to results of numerous state-of-the-art models for three budgets of object proposals:
500, 1000, 2000. Runtimes are taken from [13]. M-MCG achieves the highest accuracy in all metrics. BING takes 0.06s on our platform
without using multithreading and image preloading, the same evaluation condition with our methods. Hosang et al. [13] reports a slower
0.2s runtime probably due to some unoptimized disk I/O, according to our communication with J. Hosang.

perpixel, generating object proposals with both high diver-
sity and accurate localization. By integrating our method
into existing models, we achieve state-of-the-art results in

all metrics. Learning adaptive threshold for bounding box
refinement is included in our future works, which could fur-
ther increase the accuracy with fewer proposals.
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