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Abstract

Low-rank matrix factorization is an essential problem in
many areas including computer vision, with applications in
e.g. affine structure-from-motion, photometric stereo, and
non-rigid structure from motion. However, very little atten-
tion has been drawn to minimal cases for this problem or
to using the minimal configuration of observations to find
the solution. Minimal problems are useful when either out-
liers are present or the observation matrix is sparse. In this
paper, we first give some theoretical insights on how to gen-
erate all the minimal problems of a given size using Laman
graph theory. We then propose a new parametrization and
a building-block scheme to solve these minimal problems by
extending the solution from a small sized minimal problem.
We test our solvers on synthetic data as well as real data
with outliers or a large portion of missing data and show
that our method can handle the cases when other iterative
methods, based on convex relaxation, fail.

1. Introduction
Assume that we have a matrix X ∈ Rm×n of rank r <

min(m,n). Low-rank matrix factorization aims at finding
two matrices U ∈ Rr×m and V ∈ Rr×n, such that X can
be written as

X = UTV. (1)

In geometric computer vision, several problems can be
formulated as low-rank matrix factorization. For example,
for affine structure-from-motion (SfM), the observation ma-
trix containing feature tracks can be factorized into the cam-
era motions and the 3D structure. For photometric stereo,
the directions of light sources and the surface normals are
separated by factorizing the measurement matrix composed
of pixel intensities under a Lambertian model. More exam-
ples of applications can be found in [2, 3, 11, 30].

For real data, with noise or outliers, the observation ma-
trix will in general not have the exact rank as given. So the

problem is usually formulated as minimizing the following
cost function,

min
U,V
‖X − UTV ‖, (2)

where ‖.‖ is a matrix norm – typically the L1- or L2-
norm. This is under the assumption that all entries in X
are known. When missing data is present, a binary matrix
W ∈ {0, 1}m×n is used to indicate if a certain entryX(i, j)
is present (W (i, j) = 1) or missing (W (i, j) = 0). In this
case, the problem is formulated as

min
U,V
‖W � (X − UTV )‖, (3)

where � is the Hadamard product, that is, the element-wise
product.

Related work Early work on low-rank matrix factoriza-
tion solve (2) using the L2-norm. Truncating the singular
value decomposition of X has been shown to give the op-
timal solution under the L2-norm when X is complete, see
[9]. The work in [29] was the first to consider missing data.

However, the L2-norm is sensitive to outliers. An early
work that aims for robustness to outliers is [1]. Here they
use an iteratively re-weighted least squares approach to op-
timize the objective function. In [4], a damped Newton
method is proposed to handle the missing data. Since [16],
more robust norms have been considered. In [16], algo-
rithms based on alternating optimization are introduced un-
der the Huber-norm and the L1-norm. In [10], the Wiberg
algorithm [29] is generalized from the L2-norm to the L1-
norm. A number of recent works put extra constraints on
the factor matrices U and V . In [5], the constraints that
the matrix U should lie on a certain manifold for different
applications are considered and incorporated in the formu-
lation. In [31], orthogonal constraints on the columns of U
and a nuclear norm regularizer on V are incorporated.

Most methods mentioned above are based on alternat-
ing optimization and are prone to get trapped in local min-
ima. Recently, several works [8, 7, 21, 11, 25] re-formulate
the problem to minimize the convex surrogate of the rank



function, that is, the nuclear norm. This makes it possible
to use convex optimization to find the global optimum of
the approximated objective function. These approaches can
handle the problems when the rank is not known a priori.
However, for applications with a given rank, the nuclear
norm based methods usually perform inferior to the bilin-
ear formulation-based methods [6]. Another drawback of
the nuclear norm method is that it is sensitive to outliers.
The performance is also affected by an increasing number
of missing data.

A few recent works [23, 15, 20, 19] also explore the idea
to divide the whole matrix into overlapping sub-blocks and
combine the sub-block solutions. One motivation is due to
the structured missing data patterns in the measurement ma-
trix. For example, for SfM datasets the observations nor-
mally span a diagonal band while off-diagonal entries are
mainly missing data. However, these methods do not con-
sider both outliers and missing data at the same time. We
use a similar block-partition strategy, but give a more gen-
eral solution by considering both outliers and missing data.

In this paper, we investigate the minimal problems in
low-rank matrix factorization. It turns out that there are
many of them and that the structure of these minimal prob-
lems is extremely rich and complicated. Nevertheless, we
will give some results concerning characterization and gen-
eration of such problems and also provide an initial study
on solving them. It is worth noting that a few works are
relevant to this paper. For the specific SfM problem, esti-
mation of the minimal cases for missing data were inves-
tigated in [26], but here we look at a much more general
problem. In [14], a combinatorial method is proposed by
searching among the linearly solvable minimal cases, while
in this paper, we provide a unified view on all the minimal
problems and give solvers for more general minimal prob-
lems, not only restricted to linearly solvable ones. The con-
cepts based on rigid graphs have also been previously inves-
tigated for multidimensional scaling problems with missing
data in [27].

Our main contributions in this paper are: (i) generation
and characterization of the minimal problems, (ii) solvers
to a number of these minimal problems and (iii) algorithms
using minimal solvers to factorization problem with missing
data and outliers in L1-norm or L2 norm.

2. Generating the minimal problems
We can define the following partial order relationship

”≤” between two index matrices W and W ′.

Definition 2.1. Given two index matrices W and W ′, we
say that W ≤W ′ if W (i, j) = 1 =⇒ W ′(i, j) = 1. Here
W is submatrix of W ′. W < W ′ if W is a strict submatrix
of W ′.

An index matrix W is said to be rigid if for general data,

the low-rank matrix factorization problem given by

W � (X − UTV ) = 0, (4)

is locally well defined.
The notion of rigidity is invariant under the permutation

of the rows or columns. We define the following equivalent
relationship between two index matrices

Definition 2.2. Given two index matrices W and W ′,
we say that W is equivalent to W ′ if W (i, j) =
W ′(P1(i), P2(j)) where P1 and P2 are permutations of
row/column indices for all {i, j}

Before giving the definition of the minimal problems
in matrix factorization, we look at the degrees of freedom
(DoF) for a low-rank matrix. For a rank-r factorization of a
matrix X ∈ Rm×n we have that U has mr DoF and V has
nr DoF. There is a total coordinate ambiguity of size r × r
as

X = UTV = UTQQ−1V, (5)

where Q ∈ Rr×r is a full rank matrix. Thus a matrix
X ∈ Rm×n with rank r, has mr+ nr− r2 degrees of free-
dom. This means that we need at least d = mr + nr − r2
measurements to recover a rank-r matrix X of size m× n.

A minimal problem for low-rank matrix factorization is
characterized using a minimal index matrix, which is de-
fined as

Definition 2.3. An index matrix W for a rank-r problem is
said to be minimal if it is rigid and satisfies

∑
ij W (i, j) =

mr + nr − r2. W is said to be overdetermined if∑
ij W (i, j) > mr + nr − r2.

It is trivial to see that if W is rigid and if W ≤ W ′ then
W ′ is also rigid. It also can be shown that if W ′ is rigid and
overdetermined, then there is at least one W < W ′ that is
rigid and minimal.

A minimal low-rank matrix factorization problem is
finding two factor matrices U and V that exactly solves (4),
where W is a minimal index matrix and X is the measure-
ment matrix. For the minimal problem, with general coef-
ficients, characterized by a minimal index matrix W , there
is a finite number nW > 0 of solutions, where nW only
depends on the index matrix W .

2.1. Characterizing minimal index matrices

For every minimal index matrix W of size m × n there
is a corresponding minimal index matrix W ′ of size n×m
such that W (i, j) = W ′(j, i). Without loss of generality
we may thus in the discussion assume that n ≥ m. Each
minimal index matrix has mr+nr− r2 non-zero elements.
Since by assumption m ≤ n, we have at most 2nr − r2

non-zero elements, which are distributed among n columns.
Thus there are never enough non-zero elements to fill up 2r



non-zero elements of each column, in another word, there
is at least one column which has fewer than 2r non-zeros.
Furthermore it is obvious that for rank-r problems, the min-
imal index matrices must have at least r non-zero elements
in each column, otherwise the corresponding column v of
V has too few constraints to be solvable. So for the column
with the smallest number k of non-zero elements we must
have r ≤ k < 2r.

We also notice that since we assume r < min(m,n)
thenm−r ≥ 1. This means that for a minimal index matrix,
the number of non-zeros mr + nr − r2 ≥ nr + r. If we
distribute these non-zeros in n columns, each of which has
at least r zeros, then there is at least one column which has
k non-zeros, where k ≥ r + 1.

2.2. Henneberg-like extensions

We will now describe how to generate the minimal prob-
lems in low-rank matrix factorization. The inspiration
comes from rigid graph theory, wher the Henneberg con-
struction is used to generate the Laman graph, see [18, 12].
The idea is that one starts with the smallest index matrix,
and by a series of extensions every index matrix can be gen-
erated. For example, for r = 2, the smallest index matrix
is

W =

[
1 1
1 1

]
. (6)

In the following we will distinguish between construc-
tive extensions and non-constructive extensions. For a con-
structive extension fromW toW ′, one can infer the number
of solutions nW ′ from nW and construct the solver, denoted
by fW ′ from fW . For non-constructive extensions, it can
be shown that W is minimal if and only if W ′ is minimal.
However, we can in general neither infer the number of so-
lutions nW ′ from nW nor derive a solver fW ′ from fW .
We propose the following extensions and reductions which
are denoted Henneberg-k extensions/reductions. Of these
Henneberg-1 is constructive, whereas Henneberg-k are gen-
erally non-constructive.

Henneberg-1 extension Given a minimal index matrix
W for a rank-r problem of sizem×n, an extended minimal
index matrix W ′ of size m × (n + 1) is formed by adding
a column with exactly r indices (non-zero elements). The
number of solutions is identical, i.e. nW = nW ′ . Extending
an algorithm from fW to fW ′ is straightforward. A similar
extension can be done by adding a row with r indices.

Henneberg-1 reduction Given a minimal index matrix
W for the rank-r problem of size m × n where there is
a column wj with exactly r indices, a reduced minimal in-
dex matrix W ′ of size m× (n− 1) is formed by removing
column j. The number of solutions is preserved under the
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Figure 1. An example of generating rank-2 index matrices of in-
creasing size using a sequence of Henneberg-1 and Henneberg-2
extensions.

reduction and the solution for W ′ can be obtained straight-
forward from the solution for W . A similar extension can
be done by removing a row with r indices.

Henneberg-2 extension Given a minimal index matrix
W for the rank-r problem of size m × n, where there is
a column wj with at least r + 1 non-zero elements at rows
i1, . . . , ir+1 (such a column must exist from Section 2.1),
an extended index matrix W ′ of size m × (n + 1) can be
formed by first adding a column w′ with exactly r+1 non-
zero elements at rows i1, . . . , ir+1, then setting one of the
non-zeros of wj to be zero. The resulting index matrix W ′

will be minimal. A similar extension can be done in a row-
wise manner.

Similarly one can define the Henneberg-2 Reduction.
This can generalized to Henneberg-k extension and reduc-
tion for k > 2. We illustrate an example of how the index
matrices for rank-2 problem can be generated using both
Henneberg-1 and Henneberg-2 extensions in Fig. 1.

As shown in [12], every minimally rigid graph can be
formed using a sequence of Henneberg-1 and Henneberg-2
construction in the context of rigid graphs. In the follow-
ing we will show that every minimal index matrix can be
generated using a series of Henneberg-k extension defined
above for rank r = 1 and r = 2 case. We also make a con-
jecture that this is the case for the general rank-r problems
with r > 2.

Theorem 2.4. Each index matrix for a minimal rank-1
problem can be formed by a series of Henneberg-1 exten-
sions from the 1× 1 index matrix W = [1] as the base case.

Proof. The proof is by induction over size. If the matrix is
of size 1 × 1 then we are finished. Assume that it is true
for all matrices of size m × n with m + n ≤ K. Take a
minimal index matrix with m + n = K + 1. From Sec-
tion 2.1, we know that there always exists a column with
at least k non-zero elements where r ≤ k < 2r. In this
case, there is always a column with exactly one non-zero
element. After a Henneberg-1 reduction on that column, we
obtain a minimal index matrix with m+n = K, which can
be constructed as our assumption. So the original matrix is
a Henneberg-1 extension of a smaller index matrix that is in
the assumption, which proves the theorem. A similar proof
exists for a row-wise extension.
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Figure 2. Column-wise and row-wise Henneberg-1 extensions.

Theorem 2.5. Each index matrix for a minimal rank-2
problem can be formed by a series of Henneberg-1 and
Henneberg-2 extensions from the 2 × 2 index matrix in (6)
as the base case.

Proof. The proof is similarly by induction over size. If the
matrix is of size 2 × 2 then we are finished. Assume that
it is true for all matrices of size m × n with m + n ≤ K.
Take a minimal index matrix with m + n = K + 1. From
Section 2.1, we known that there is always a column with
exactly k non-zero elements where r ≤ k < 2r, i.e. k =
2 or 3 in this case. If the column has two non-zeros then
the index matrix can be constructed using the Henneberg-1
extension from the one that is in the assumption. If the col-
umn has three non-zeros then it can be reduced to an index
matrix of size m+ n ≤ K using a Henneberg-2 reduction.
In either case, we have shown that the index matrix can be
constructed using a Henneberg-1 or Henneberg-2 extension
from a smaller index matrix given in the assumption, which
proves the theorem. The proof for a row-wise extension can
be shown similarly.

Conjecture 2.1. Each minimal index matrix for the rank
r problem can be formed by a series of Hennberg-1 to
Henneberg-r extensions.

Thus it is possible to generate all the minimal index ma-
trices using a sequence of Henneberg extensions.

3. Minimal solvers
In this section, we will describe the solvers to the min-

imal problems generated from different Henneberg exten-
sions.

3.1. Solvers for Henneberg-1 extensions

Suppose we are given a rank-r minimal problem with
index matrix W and measurements X . Assume that the
solution to {X,W} is given by {U, V } as

W � (X − UTV ) = 0. (7)

Now we apply a Henneberg-1 extension to W to get W ′ =
[W |w] where the column vector w has r ones. Correspond-
ingly the measurement matrix is extended to X ′ = [X|x]
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Figure 3. Other constructive extensions. In (a) the overlap of size
r × r gives sufficient constraints. In (b) and (c) some extra con-
straints are needed when the overlap is smaller than r × r

.

where x has r observations. To find the solution to the ex-
tended minimal problem, it is obvious that we only need to
solve for the extra column v of V to satisfy the following
equation

W ′ � (X ′ − UT [V |v
]
) = 0. (8)

Now assume the positions for the r observations of x are at
I = {n1, . . . , nr}. Then we have the following equation

UT
Iv = xI , (9)

where UI ∈ Rr×r and xI ∈ Rr denotes taking the cor-
responding rows at I from U and x respectively. This is
a linear system with a unique solution. For the row-wise
Henneberg-1 extension, we will keep V unchanged and
solve for the extra row uT of U using a similar strategy.

3.2. Solvers for other constructive extensions

Henneberg-k extensions for k ≥ 2 are non-constructive,
which means that forW →W ′ one cannot construct the so-
lution to W ′ from the solution to W . However, we can de-
fine some other constructive extensions. The intuitive idea
is that given two index matrices W1 and W2, one can con-
struct a new index matrix W by ”glueing” W1 and W2 to-
gether. By ”glueing”, we mean that W contains both W1

andW2 with overlapping rows and columns as illustrated in
Fig. 3.

In the following, we will first describe a general
parametrization for these types of constructive extensions,
that is independent of the rank r. We derive several con-
straints from the parametrization that can be used to solve
the minimal problem. A few examples for rank-2 and rank-
3 are then illustrated.

Parametrization Consider that we have a minimal prob-
lem with index matrix W and measurement X . W is con-
structed by ”glueing” two index matrices W1 and W2 as in
Fig. 3a. We use I1 and J1 to denote the row and column
indices of W1 in W , similarly I2, J2 for W2. Then we have



W1 = W (I1, J1) and W2 = W (I2, J2). Accordingly for
measurement matrices X1 and X2 associated with W1 and
W2, we have X1 = X(I1, J1) and X2 = X(I2, J2). We
also use I12 and J12 to denote the indices of overlapping
rows and columns as I12 = I1 ∩ I2 and J12 = J1 ∩ J2.

Assume that the solutions to the sub-problem {W1, X1}
and {W2, X2} are given by {U1, V1} and {U2, V2} respec-
tively. To construct the solution to {W,X}, the idea is to
find a transformation matrix H ∈ Rr×r to transform the
subspace U2 to the same coordinate framework as the sub-
space U1. Using this transformation we have

UT
2 V2 = (U2)

THTH−T(V2) = (HU2)
T(H−TV2). (10)

NowHU2 andH−TV2 are in the same coordinate frame-
work as U1 and V1 respectively. The remaining problem
is to solve for H . We have the following constraint, that
states that U1 and HU2 should coincide for the overlapping
columns as

U1(i, I12) = HU2(i, I12), i = 1, . . . , r. (11)

Similarly we have the overlapping constraints for V1 and
H−TV2 as

V1(i, J12) = H−TV2(i, J12), i = 1, . . . , r. (12)

This can be written as

HTV1(i, J12) = V2(i, J12), i = 1, . . . , r, (13)

which is linear with respect to H .
If we have enough constraints from (11) and (13), H can

be solved linearly. In that case, the overlap should be of size
r × r as in Fig. 3a. For the cases where the overlap doesn’t
give sufficiently many constraints, we need some extra con-
straint outside W1 and W2 to solve for the transformation
matrix H as in Fig. 3b-c.

To solve the case with extra constraints, we know that
each extra measurement X(i, j) directly gives a constraint
as

uT
ivj −X(i, j) = 0, (14)

where ui and vj are i-th and j-th column of U and V
respectively. We need to express the constraint using U1,
U2, V1 and V2 from which we assume {U1, V1} are in the
same coordinate system as {U, V }. There are generally two
cases. When X(i, j) is in the top-right as in Fig. 3b, one
needs to use U1 and V2 as

U1(:, i1)
TH−TV2(:, j2)−X(i, j) = 0. (15)

where i1 denotes the local index of column i in U1 and j2
the local index of column j in V2. When X(i, j) is in the
bottom-left as in Fig. 3c, one needs to rewrite (14) using U2

and V1 instead as

(HU2(:, i2))
TV1(:, j1)−X(i, j) = 0. (16)

where i2 denotes the local index of column i in U2 and j1
the local index of column j in V1.

All these constraints from (11), (13), (15) and (16) form
either a linear system or a simple polynomial system, from
which one can solve the transformation H and thus get a
solution to the original problem. In the following we will
illustrate a few examples for rank-2 and rank-3 problem, all
of which can be parametrized and solved in a similar way.

Examples of rank-2 constructive extensions Here we
will present a few constructive extensions for rank-2 prob-
lems, which are illustrated in Fig. 4. The overlap for rank-2
problems is at most 2 × 2, otherwise the extension is non-
minimal. For a 2×2 overlap,H can be solved linearly using
only the overlap constraints. For a 1×1 overlap with an ex-
tra constraint as in Fig. 4, the overlap in U gives two equa-
tions from (11) and the overlap in V gives two equations
from (13). Among the four equations, one is redundant as
it is automatically satisfied when the other three hold. So
one can parametrize H using a single variable, and we can
solve using a single extra constraint.

One could of course generate a minimal problem by
”glueing” more index matrices. In Fig. 4b-c, each sub-
part needs a transformation, namely H1, H2 and H3 of
which one can fix the gauge by setting H2 = I . Two
extra constraint are needed to solve the problem. For the
case in Fig. 4d, four transformation H1, H2, H3 and H4

are needed. By setting H2 = I , one can parametrize H1,
H3 and H−13 H4 using z1, z2 and z3 respectively. Each of
three extra constraints provide a quadratic equation in z1,
z2 and z3 respectively, which could be solved giving three
solutions.

Examples of rank-3 constructive extensions For rank-3
problems, the maximum overlap is 3 × 3 which can then
be solved linearly. The 2 × 2 overlap case, illustrated in
Fig. 5a, H can be parametrized using a single variable z,
and can be solved linearly using one extra constraint. When
the overlap is 1× 1 as in Fig. 5b, the overlap provides three
equations in (11) and three equations in (13). However one
of them is redundant, which means it reduces the DoF of H
from nine to four. Thus four extra constraints are needed to
solve for H .

4. Algorithms for structured data patterns
For real problems, a measurement matrix might be more

dense than that for a minimal problem. However, one could
apply a random sampling strategy similar to [14] to sam-
ple minimal configurations from measurements and solve a
minimal problem in each RANSAC-like iteration.

In applications where the locations of the missing
data are highly correlated and structured – for example
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Figure 4. Examples of rank-2 constructive extensions. In each of
these four examples several smaller minimal cases are glued to-
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affine structure-from-motion – we can use a similar block-
partition idea as in [20] to divide the measurement matrix
into overlapping sub-blocks. The solution to each sub-block
is estimated separately using the random sampling method.
Once we obtain solutions to all the sub-blocks, we can use a
null space matching method [24] to combine those solutions
and recover the full factorization.

The block partition in our method differs from the strat-
egy used in [20] in that using minimal solvers, missing data
can be handled in the sub-blocks, while in [20] each sub-
block must be complete without missing data based on their
convex formulation. As we will show in the experiment, be-
ing able to cope with missing data in each sub-block leads
to a more flexible way of partition which could cover all the
observations.

5. Experiments

We have conducted a number of experiments on both
synthetic and real data. For synthetic data and affine
structure-from-motion, we use the solvers for both the
Henneberg-1 extension and the constructive extensions
from Section 3.2. The other constructive extension is useful
when the measurement matrix is sparse, especially when it
is not possible to find a minimal configuration using only
the Henneberg-1 extension. For the shape basis estimation,
we use only the Henneberg-1 extension solver, as the matrix
is more dense.

5.1. Synthetic data

For synthetic data, we generate random rank-3 matrices
of size 100×100 with entries uniformly drawn from [−1, 1].
All entries are then perturbed with noise drawn from a nor-
mal distribution N (0, σ) where σ takes (0, 10−3, 10−2).
The rank constraint is enforced using a truncated SVD.

A structured data pattern is formed by removing some
measurements in the generated matrices. We are especially
interested in the band-diagonal structure which appears in
many structure-from-motion problems. A sparse matrix D
is said to be band-diagonal with bandwidth k if the follow-
ing equations hold

dij = 0 for j < i− k or j > i+ k. (17)

Here we generate random band-diagonal matrices of size
100× 100 with varied bandwidth k from 20 down to 4. The
corresponding proportion of missing data ranges from 64%
up to 92%. For comparison, we consider two state-of-the-
art methods, namely Truncated Nuclear Norm Regulariza-
tion (TNNR-ADMM) [13] and OptSpace [17]. OptSpace
was initialized using truncated SVD.

We plot the log10 error versus the bandwidth of the ma-
trix in Fig. 6, with the error defined as ‖W�(X−UTV )‖F .
When the bandwidth decreases (the missing data increases),
the performance of both TNNR-ADMM and OptSpace are
affected, especially when the bandwidth k < 10 which cor-
responds to around 80% missing data. In the noise-free
case, our method achieves significantly lower error. With
low level noise, that is σ = 10−3, our method remains sta-
ble with respect to the rate of missing data. With medium
level noise, σ = 10−2, our method will also be affected
when K < 10, but will still perform better compared to
TNNR-ADMM and OptSpace.

5.2. Real data

Affine structure-from-motion We evaluate our method
on the well-known dinosaur sequence for affine structure-
from-motion. The original dinosaur sequence contains 2D
point tracks from the projection of in total 3184 3D points
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Figure 6. The synthetic data with band-diagonal structure. The bandwidth of matrix vs. The log10 L2-error. Left: Noise-free case. Middle:
Noise level σ = 10−3, Right: Noise level σ = 10−2.

in 36 cameras. Each 3D point is only visible in a few con-
secutive views and missing for the rest of the views due
to self-occlusion. We consider rank-4 factorization which
does not use any initial estimate of the translation, see e.g.
[28].

To reduce processing time, we take a subset of 3D points
which are visible in at least 8 views. This forms an ob-
servation matrix X of size 72 × 116 with 87.8% missing
data. We first compare with TNNR and OptSpace, neither
of which handle outliers. In this case, we divide the mea-
surement matrix into 4 overlapping blocks with varied size,
see Fig. 7a. The partition of the measurement matrix is a
trade-off between the complexity and the numerical accu-
racy. For a too large block, the numerical error within the
block accumulates for the Henneberg-1 extension solver. If
we divide the matrix into too many sub-blocks, it unnec-
essarily increases the complexity. We ran our method with
1000 iterations followed by a non-linear least square opti-
mization in the final step.

The results are shown in Fig. 7. Both TNNR and
OptSpace failed to recover the 2D tracks. We plot the re-
covered tracks for our method and TNNR in Fig. 7c and 7d
respectively. When the data matrix is sparse, the recovered
2D tracks from TNNR are stretched towards the origin (top
right corner) of the image.

In the presence of outliers, both TNNR and OptSpace
will fail. We thus compare with two L1-norm based meth-
ods, namely the Wiberg-L1 in [10] and Regularized L1

augmented Lagrange multiplier method (RegL1-ALM) in
[31]. We add 10% outliers to the measurement matrix that
in the range [−50, 50]. The only change in our method is
that in each iteration we compute the error in L1-norm as
‖W � (X − UTV )‖1 instead of the Frobenius norm. We
run 1000 iterations with our minimal solvers within each
sub-block. The average L1 error for our method is 1.314
pixels and 1.231 for the Wiberg-L1 and 2.223 for RegL1-
ALM.
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Figure 7. Affine structure from motion on the dinosaur sequence.
(a) The band-diagonal structure and block partition. (b) The input
2D tracks. (c) The recovered 2D tracks using our method. (d) The
recovered 2D tracks using TNNR.
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nz = 2552Figure 8. The missing data and block partition on the Book dataset.
Left: our method. Right: [20]

Linear shape basis For non-rigid structure-from-motion,
a linear shape basis model is commonly used to model the
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Figure 9. The results on the Book (top) and Hand (bottom) dataset using our method with an extra 10% missing data added in the blocks.
From left to right: The 1st, 10th, 20th, 30th frame. The blue crosses are the measurements. The yellow dots are the recovered measure-
ments (usually coinciding with the actual measurement). The green dots are the recovered missing data.

shape of a non-rigid object. It assumes that any non-rigid
deformation of an object can be represented as a linear com-
bination of a set of shapes. Normally the size of the shape
basis is much smaller than either the number of frames or
the tracked points, so the measurement matrix containing
the point tracks can be factorized into a coefficient matrix
and a shape basis matrix.

Two datasets – Book and Hand – from [20] are used. The
image points are tracked using a standard Kanade-Lucas-
Tomasi (KLT) tracker [22]. Due to occlusions, the tracker
fails after a number of frames for a subset of points, which
leads to the missing data pattern for the Book dataset shown
in Fig. 8. In our experiments, we use a subset of 42 frames
with 60 tracked points from the Book and 38 frames with
203 points from the Hand dataset. Following the setup in
[20], we seek a rank-3 and rank-5 factorization on the two
datasets respectively.

The block partition of both our method and [20] are il-
lustrated in Fig. 8. Contrary to [20], missing data within
blocks are handled in our method, giving a more flexible
partition with wider coverage of measurements. We run our
method with 1000 iterations for each block. To further show
that our method is capable to handle random missing data,
we conduct a second experiment by randomly adding an ex-
tra 10% of missing data in the measurement matrix and run
both methods with the same settings as before.

We summarize the error ‖W�(X−UTV )‖F in Table 1.
Our method achieves smaller error in both dataset with or
without adding extra missing data. When random missing
data is added into the blocks, [20] fails with large errors.
In Fig. 9, the recovered tracked points are plotted for both
datasets using our method with extra missing data. Without

Algorithm 10 % missing data

Dataset [20] Our [20] Our

Book 0.3522 0.1740 8.0436 0.1772
Hand 0.8613 0.6891 1.5495 0.7297

Table 1. The result on linear shape basis estimation on the Book
and Hand dataset, where the second experiment contains an extra
10% missing data. The numbers depict the Frobenius errors using
our method compared to the method of [20].

extra missing data, both our method and [20] achieve quite
similar visual results. The running time for our method
is 12s on Book and 28s on Hand. For [20], it is 2.5s on
Book and 4.5s on Hand. However, the running time for our
method can be further reduced as it is highly parallelizable.

6. Conclusion
In this paper, we have introduced theory to characterize

and generate the minimal problems of low rank matrix fac-
torization, inspired by the Henneberg extensions from rigid
graph theory. We have shown that for rank-1 and rank-2, the
proposed Henneberg extensions can generate all minimal
problems. We conjecture that using additional Henneberg
extensions, all minimal problems can be generated for any
given rank. Several solvers are proposed to solve minimal
problems using constructive extensions. With block parti-
tion and a random sampling scheme, minimal solvers can
be used in a number of real applications when the data ma-
trix is sparse and contains outliers.
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