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Saliency detection aims to identify the most attractive object in an image.
Recently, propagation methods [1, 2, 3] have gained much popularity in
bottom-up saliency detection and achieved state-of-the-art performance. All
these methods generate similar propagation sequences which are complete-
ly governed by the spatial relationship of image regions. In other words,
unlabelled superpixels will be assigned saliency values as long as they are
connected to the labelled superpixels. However, once encountering the in-
homogeneous or incoherent adjacent superpixels, the conventional propaga-
tion sequences are misleading and likely to yield inaccurate results.

In this paper, we attempt to manipulate the propagation sequence for
optimizing the propagation quality. Intuitively, we postpone the propaga-
tions to difficult regions and meanwhile advance the propagations to less
ambiguous simple regions. A novel propagation algorithm employing the
Teaching-to-Learn and Learning-to-Teach (abbreviated as “TLLT”) strate-
gies (see Fig. 1) is proposed so that the unlabelled superpixels are logically
propagated from simple to difficult. In the teaching-to-learn step, a teacher
is designed to arrange the regions from simple to difficult and then assign
the simplest regions to the learner. In the learning-to-teach step, the learner
delivers its learning feedback to the teacher to assist the teacher to choose
the proper subsequent simple regions.
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Figure 1: An illustration of our TLLT paradigm. In the teaching-to-learn
step, based on a set of labeled superpixels (magenta) in an image, the teacher
discriminates the adjacent unlabeled superpixels as difficult (blue superpix-
els) or simple (green superpixels) by fusing their informativity, individuali-
ty, inhomogeneity, and connectivity. Then simple superpixels are learned by
the learner, and the labeled set is updated correspondingly. In the learning-
to-teach step, the learner provides a learning feedback to the teacher to help
decide the next curriculum.

Specifically, in the teaching-to-learn step, the teacher evaluates the prop-
agation difficulty DSi of an unlabeled superpixel si by considering its infor-
mativity INF i, individuality INDi, inhomogeneity IHMi, and connectivity
CONi, namely:

DSi = INF i + INDi + IHMi +CONi, (1)
where
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Figure 2: Visual comparisons of saliency maps generated by all the methods
on some challenging images. The ground truth (GT) is presented in the last
column.

CONi =
1
l ∑ j∈L geo(si,s j). (5)

In (2), the informativity of a superpixel si is modelled by the condition-
al entropy H(si|L), where L denotes the labelled set and σ2

i|L denotes the
conditional covariance of si’s associated random variable fi given L. In (3),
N (si) represents the neighboring superpixels of si and |N (si)| computes the
amount of neighbors. In (4), the matrix Q encodes the pairwise correlations
of b pixels contained by si in the LAB color feature space. In (5), geo(si,s j)
represents the geodesic distance between si and s j, and l is the number of
labelled superpixels.

After the difficulty scores of all candidate superpixels are computed, the
next step is to pick up the simplest q(t) superpixels as the t-th curriculum.
This is completed by the learning-to-teach step. In detail, q(t) should be
adjusted by considering the effect of previous learning. Therefore, by de-
noting f (t−1)

i as the si’s saliency value after the (t−1)-th propagation, we
define a confidence score to blindly evaluate the (t−1)-th learning perfor-
mance, which is formulated as

Con f idenceScore=1− 2
q(t−1) ∑

q(t−1)

i=1 min( f (t−1)
i ,1−f (t−1)

i ), (6)

and q(t) is finally computed by

q(t) =
⌈∣∣∣C(t)∣∣∣×Con f idenceScore

⌉
, (7)

where
∣∣∣C(t)∣∣∣ is the number of candidate superpixels for the t-th propagation.

After the curriculum T (t) =
{

s1,s2, · · · ,sq(t)

}
is specified, the learner

will propagate the saliency values from L(t) to T (t) via the following ex-
pression:

f(t+1) = M(t)D−1Wf(t), (8)

where W is the adjacency matrix of the similarity graph between super-
pixels, and D is the diagonal degree matrix with Dii = ∑ j Wi j. M(t) is a

diagonal matrix with M(t)
ii = 1 if si ∈L(t)∪T (t), and M(t)

ii = 0 otherwise.
f(t) =

(
f t
1 · · · f t

N
)T is an N-dimensional vector (N is the total amount of

superpixels in the image) including the saliency values of all the superpix-
els. When the t-th iteration is completed, the labeled and unlabeled sets are
updated as L(t+1)=L(t)∪T (t) and U (t+1)=U (t)\T (t), respectively.

we compare the proposed TLLT with twelve representative methods
on two popular saliency datasets. The results presented in Fig. 2 reveal
that compared with existing methods TLLT renders more confident saliency
maps with higher background suppression, yielding a better popping out of
objects of interest.
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