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Abstract

Saliency propagation has been widely adopted for iden-
tifying the most attractive object in an image. The prop-
agation sequence generated by existing saliency detection
methods is governed by the spatial relationships of image
regions, i.e., the saliency value is transmitted between two
adjacent regions. However, for the inhomogeneous difficult
adjacent regions, such a sequence may incur wrong propa-
gations. In this paper, we attempt to manipulate the prop-
agation sequence for optimizing the propagation quality.
Intuitively, we postpone the propagations to difficult regions
and meanwhile advance the propagations to less ambiguous
simple regions. Inspired by the theoretical results in educa-
tional psychology, a novel propagation algorithm employ-
ing the teaching-to-learn and learning-to-teach strategies is
proposed to explicitly improve the propagation quality. In
the teaching-to-learn step, a teacher is designed to arrange
the regions from simple to difficult and then assign the sim-
plest regions to the learner. In the learning-to-teach step,
the learner delivers its learning confidence to the teacher to
assist the teacher to choose the subsequent simple regions.
Due to the interactions between the teacher and learner,
the uncertainty of original difficult regions is gradually
reduced, yielding manifest salient objects with optimized
background suppression. Extensive experimental results on
benchmark saliency datasets demonstrate the superiority of
the proposed algorithm over twelve representative saliency
detectors.

1. Introduction

Saliency detection has attracted intensive attention and

achieved considerable progress during the past two decades.

Up to now, a great number of detectors based on computa-

Figure 1. The results achieved by typical propagation methods and

our method on two example images. From left to right: input

images, results of [27], [10], and our method.

tional intelligence have been proposed. They can be roughly

divided into two categories: bottom-up methods that are

data and stimulus driven, and top-down methods that are

task and knowledge driven.

Top-down methods are usually related to the subsequent

applications. For example, Maybank [19] proposed a proba-

bilistic definition of salient image regions for image match-

ing. Yang et al. [28] combined dictionary learning and Con-

ditional Random Fields (CRFs) to generate discriminative

representation of target-specific objects.

Different from top-down methods, bottom-up methods

use low-level cues, such as contrast and spectral informa-

tion, to recognize the most salient regions without realizing

content or specific prior knowledge about the targets. The

representatives include [3, 6, 8, 9, 11, 13, 14, 15, 17, 20].

Recently, propagation methods have gained much popu-

larity in bottom-up saliency detection and achieved state-of-

the-art performance. To conduct saliency propagations, an

input image is represented by a graph over the segmented

superpixels, in which the adjacent superpixels in the image

are connected by weighted edges. The saliency values are

then iteratively diffused along these edges from the labeled

superpixels to their unlabeled neighbors. However, such
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propagations may incur errors if the unlabeled adjacent

superpixels are inhomogeneous or very dissimilar to the

labeled ones. For example, [7] and [10] formulate the

saliency propagation process as random walks on the graph.

[21] and [27] conduct the propagations by employing per-

sonalized PageRank [29] and manifold based diffusion [29],

respectively. All these methods generate similar propaga-

tion sequences which are heavily influenced by the super-

pixels’ spatial relationships. However, once encountering

the inhomogeneous or incoherent adjacent superpixels, the

propagation sequences are misleading and likely to lead to

inaccurate detection results (see Fig. 1).

Based on the above observations, we argue that not

all neighbors are suitable to participate in the propagation

process, especially when they are inhomogeneous or visu-

ally different from the labeled superpixels. Therefore, we

assume different superpixels have different difficulties, and

measure the saliency values of the simple superpixels prior

to the difficult ones. This modification to the traditional

scheme of generating propagation sequences is very critical,

because in this modification the previously attained knowl-

edge can ease the learning burden associated with complex

superpixels afterwards, so that the difficult regions can be

precisely discovered. Such a “starting simple” strategy

conforms to the widely acknowledged theoretical results in

pedagogic and cognitive areas [4, 12, 22], which empha-

size the importance of teachers for human’s acquisitions of

knowledge from the childish stage to the mature stage.

By taking advantage of these psychological opinions, we

propose a novel approach for saliency propagation by lever-

aging a teaching-to-learn and learning-to-teach paradigm

(displayed in Fig. 3). This paradigm plays two key roles: a

teacher behaving as a superpixel selection procedure, and a

learner working as a saliency propagation procedure. In the

teaching-to-learn step of the t-th propagation, the teacher

assigns the simplest superpixels (i.e., curriculum) to the

learner in order to avoid the erroneous propagations to the

difficult regions. The informativity, individuality, inhomo-
geneity, and connectivity of the candidate superpixels are

comprehensively evaluated by the teacher to decide the

proper curriculum. In the learning-to-teach step, the learner

reports its t-th performance to the teacher in order to assist

the teacher in wisely deciding the (t + 1)-th curriculum.

If the performance is satisfactory, the teacher will choose

more superpixels into the curriculum for the following

learning process. Owing to the interactions between the

teacher and learner, the superpixels are logically propagated

from simple to difficult with the updated curriculum, result-

ing in more confident and accurate saliency maps than those

of typical methods (see Fig. 1).

2. Saliency Detection Algorithm
This section details our saliency detection scheme (see

Fig. 2). When an input image is given, it is pre-processed

by computing the convex hull, segmenting into superpixels,

and constructing the graph over these superpixels. After

that, the saliency values are propagated from the back-

ground seeds to form a coarse map (Stage 1). Finally, this

map is refined by propagating the saliency information from

the most confident foreground regions to the remaining su-

perpixels (Stage 2). In the above stages, all the propagations

are implemented under the proposed teaching-to-learn and

learning-to-teach paradigm (see the magenta arrows in Fig.

2), which will be concretely introduced in Section 3.

2.1. Image Pre-processing

Given an input image, a convex hull H is constructed to

estimate the target’s location [26]. This is done by detecting

some key points in the image via Harris corner detector.

Because most key points locate within the target region, we

link the outer key points to a convex hull to roughly enclose

the target (see Fig. 2).

We proceed by using the SLIC [1] algorithm to over-

segment the input image into N small superpixels (see Fig.

2), then an undirected graph G = 〈V, E〉 is built where V is

the node set consisted of these superpixels and E is the edge

set encoding the similarity between them. In our work, we

link two nodes1 si and sj by an edge if they are spatially ad-

jacent in the image or both of them correspond to the bound-

ary superpixels. Then their similarity is computed by the

Gaussian kernel function ωij = exp
(
−‖si − sj‖2/(2θ2)

)
,

where θ is the kernel width and si is the feature vector

of the i-th superpixel represented in the LAB-XY space

(i.e. si = (scolori ; spositioni )). Therefore, the G’s associated

adjacency matrix W ∈R
N×N is defined by Wij = ωij if

i �= j, and Wij = 0 otherwise. The diagonal degree matrix

is D with Dii =
∑

j Wij .

2.2. Coarse Map Establishment

A coarse saliency map is built from the perspective of

background, to assess how these superpixels are distinct

from the background. To this end, some regions that are

probably background should be determined as seeds for the

saliency propagation. Two background priors are adopted to

initialize the background propagations. The first one is the

convex hull prior [26] that assumes the pixels outside the

convex hull are very likely to be the background; and the

second one is the boundary prior [23, 27] which indicates

the regions along the image’s four boundaries are usually

non-salient. Note that the two priors are not strong because

the specified non-salient regions will be further refined or

1In this paper, “superpixel” and “node” refer to the same thing. We use

them interchangeably for different explanation purposes.



input image convex hull 
(blue polygon) 
& superpixels 

graph 
construction 

(white lines are 
edges) 

background 
seeds 

boundary 
seeds 

convex hull mask 

coarse saliency 
map 

final saliency 
map 

superpixels 
Pre-processing Stage 2 

Stage 1 

input image convex hull
(blue polygon)
& superpixels
( p yg

graph 
construction

(white lines are 
edges)

superpixelsp
Pre-processing

background 
seeds

g

boundary
seeds

convex hull mask

coarse saliency 
map

Stage 1

final saliency
map

Stage 2

foreground 
seeds 

 

 

 

saliency 
map 

Figure 2. The diagram of our detection algorithm. The magenta arrows annotated with numbers denote the implementations of teaching-

to-learn and learning-to-teach propagation shown in Fig. 3.

modified by the subsequent propagation process, and every

superpixel will receive a reasonable saliency value as a

result.

For employing the convex hull prior, the superpixels

outside H are regarded as background seeds (marked with

yellow in Fig. 2) for saliency propagation. Suppose the

propagation result is expressed by an N -dimensional vector

f∗ =
(
f∗
1 · · · f∗

N

)T
, where f∗

i (i = 1, · · · , N ) are ob-

tained saliency values corresponding to the superpixels si,
then after scaling f∗ to [0, 1] (denoted as f∗normalized), the

value of the i-th superpixel in the saliency map SConvexHull

is

SConvexHull(i) = 1− f∗normalized(i), i = 1, 2, · · · , N,
(1)

Similarly, we treat the superpixels of four boundaries as

seeds, and implement the propagation again. A saliency

map based on the boundary prior can then be generated,

which is denoted as SBoundary . Furthermore, we establish

a binary mask Smask [5] to indicate whether the i-th super-

pixel is inside (SMask(i) = 1) or outside (SMask(i) = 0)

the convex hull H. Finally, the saliency map of Stage 1

is obtained by integrating SConvexHull, SBoundary , and

SMask as

SStage1 = SConvexHull ⊗ SBoundary ⊗ SMask, (2)

where “⊗” is the element-wise product between matrices.

2.3. Map Refinement

After the Stage 1, the dominant object can be roughly

highlighted. However, SStage1 may still contain some

background noise that should be suppressed. Therefore,

we need to propagate the saliency information from the

potential foreground regions to further improve SStage1.

Intuitively, we may choose the superpixels with large

saliency values in SStage1 as foreground seeds. In order to

avoid erroneously taking background as seeds, we carefully

pick up a small number of superpixels as seeds that are in

the set:

{si| SStage1(i) ≥ ηmax1≤j≤N (SStage1(j))} , (3)

where η is set to 0.7. Finally, by setting the labels of seeds

to 1 and conducting the teaching-to-learn and learning-

to-teach propagation, we achieve the final saliency map

SStage2. Fig. 2 illustrates that SStage2 successfully high-

lights the foreground regions while removes the background

noise appeared in SStage1.

3. Teaching-to-learn and Learning-to-teach
For Saliency Propagation

Saliency propagation plays an important role in our al-

gorithm. Suppose we have l seed nodes s1, · · · , sl on G
with saliency values f1 = · · ·= fl = 1, the task of saliency

propagation is to reliably and accurately transmit these

values from the l labeled nodes to the remaining u=N−l
unlabeled superpixels.

As mentioned in the introduction, the propagation se-

quence in existing methods [7, 10, 27] may incur imper-

fect results on difficult superpixels, so we propose a novel

teaching-to-learn and learning-to-teach framework to opti-

mize the learning sequence (see Fig. 3). To be specific, this

framework consists of a learner and a teacher. Given the

labeled set and unlabeled set at time t denoted as L(t) and

U (t), the teacher selects a set of simple superpixels from

U (t) as curriculum T (t). Then, the learner will learn T (t),

and return a feedback to the teacher to help the teacher

update the curriculum for the (t + 1)-th learning. This

process iterates until all the superpixels in U (t) are properly

propagated.

3.1. Teaching-to-learn

The core of teaching-to-learn is to design a teacher de-

ciding which unlabeled superpixels are to be learned. For

the t-th propagation, a candidate set C(t) is firstly estab-
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Figure 3. An illustration of our teaching-to-learn and learning-

to-teach paradigm. In the teaching-to-learn step, based on a

set of labeled superpixels (magenta) in an image, the teacher

discriminates the adjacent unlabeled superpixels as difficult (blue

superpixels) or simple (green superpixels) by fusing their infor-

mativity, individuality, inhomogeneity, and connectivity. Then

simple superpixels are learned by the learner, and the labeled set is

updated correspondingly. In the learning-to-teach step, the learner

provides a learning feedback to the teacher to help decide the next

curriculum.

lished, in which the elements are nodes directly connected

to the labeled set L(t) on G. Then the teacher chooses the

simplest superpixels from C(t) as the t-th curriculum. To e-

valuate the propagation difficulty of an unlabeled superpixel

si ∈ C(t), the difficulty score DSi is defined by combining

informativity INF i, individuality INDi, inhomogeneity

IHM i, and connectivity CON i, namely:

DSi = INF i + INDi + IHM i + CON i. (4)

Next we will detail the definitions and computations of

INF i, INDi, IHM i, and CON i, respectively.

Informativity: The simple superpixel should not contain

too much information given the labeled set L2. Therefore,

the informativity of a superpixel si∈C is straightforwardly

modelled by the conditional entropy H(si|L), namely:

INF i = H(si|L). (5)

The propagations on the graph follow the multivariate

Gaussian process [31], with the elements fi (i=1,· · · , N )

in the random vector f =
(
f1 · · · fN

)T
denoting the

saliency values of superpixels si. The associated covariance

matrix K equals to the adjacency matrix W except the

diagonal elements are set to 1.

2For simplicity, the superscript t is omitted for all the notations here-

inafter unless otherwise specified.

For the multivariate Gaussian, the closed-form solution

of H(si|L) is [2]:

H(si|L) =
1

2
ln(2πeσ2

i|L), (6)

where σ2
i|L denotes the conditional covariance of fi given

L. Considering that the conditional distribution is a multi-

variate Gaussian, σ2
i|L in (6) can be represented by

σ2
i|L = K2

ii −Ki,LK
−1
L,LKL,i, (7)

in which Ki,L and KL,L denote the sub-matrices of K
indexed by the corresponding subscripts. By plugging (6)

and (7) into (5), we obtain the informativity of si.

In (7), the inverse of an l × l (l is the size of gradually

expanded labeled set L) matrix KL,L should be computed

in every iteration. As l becomes larger and larger, directly

inverting this matrix can be time-consuming. Therefore, an

efficient updating technique is developed in the supplemen-
tary material based on the blockwise inversion equation.

Individuality: Individuality measures how distinct of a

superpixel to its surrounding superpixels. We consider a

superpixel simple if it is similar to the nearby superpixels

in the LAB color space. This is because such superpixel

is very likely to share the similar saliency value with its

neighbors, thus can be easily identified as either foreground

or background. For example, the superpixel s2 in Fig. 4(a)

has lower individuality than s1 since it is more similar to the

neighbors than s1. The equation below quantifies the local

individuality of si and its neighboring superpixels N (si):

INDi=IND(si,N (si))=
1

|N (si)|
∑

j∈N (si)

∥∥scolori −scolorj

∥∥,
(8)

where |N (si)| denotes the amount of si’s neighbors. Con-

sequently, the superpixels with small individuality are pre-

ferred for the current learning.

Inhomogeneity: It is obvious that a superpixel is ambigu-

ous if it is not homogenous or compact. Fig. 4(b) provides

an example that the homogenous s4 gets smaller IHM
value than the complicated s3. Suppose there are b pixels{
pcolor
j

}b

j=1
in a superpixel si characterized by the LAB

color feature, then their pairwise correlations are recorded

in the b × b symmetric matrix Θ = PPT , where P is a

matrix with each row representing a pixel pcolor
j . Therefore,

the inhomogeneity of a superpixel si is defined by the

reciprocal of mean value of all the pairwise correlations:

IHM i =

(
2

b2 − b

∑b

i=1

∑b

j=i+1
Θij

)−1

, (9)

where Θij is the (i, j)-th element of matrix Θ. Small

IHM i means that all the pixels in si are much correlated

with others, so si is homogenous and can be easily learned.

Connectivity: For the established graph G, a simple intu-

ition is that the nodes strongly connected to the labeled set L
are not difficult to propagate. Such strength of connectivity



is inversely proportional to the averaged geodesic distances

between si ∈ C and all the elements in L, namely:

CON i =
1

l

∑
j∈L

geo(si, sj). (10)

In (10), geo(si, sj) represents the geodesic distance be-

tween si and sj , which can be approximated by their short-

est path, namely:

geo(si, sj)= min
R1=i,R2,··· ,Rn=j

∑n−1

k=1
max(ERk,Rk+1

−c0, 0)

s.t. Rk, Rk+1 ∈ V, Rk and Rk+1 are connected in G
.

(11)

Here V denotes the nodes set of G, ERk,Rk+1
computes

the Euclidean distance between Rk and Rk+1, and c0
is an adaptive threshold preventing the “small-weight-

accumulation” problem [23].

Finally, by substituting (5), (8), (9) and (10) into (4), the

difficulty scores of all si ∈ C can be calculated, based on

which the teacher is able to determine the simple curriculum

for the current iteration. With the teacher’s effort, the

unlabeled superpixels are gradually learned from simple to

difficult, which is different from the propagation sequence

in many existing methodologies [7, 10, 21, 27].

3.2. Learning-to-teach

After the difficulty scores of all candidate superpixels

are computed, the next step is to pick up a certain number

of superpixels as curriculum based on DS1,· · ·, DS|C|. A

straightforward idea is to sort all the elements in C so that

their difficulty scores satisfying DS1≤DS2≤· · ·≤DS|C|.
Then the first q (q ≤ |C|) superpixels are used to establish

the curriculum set T ={s1, s2,· · · ,sq} according to the pre-

defined q. However, we hold that how many superpixels are

to be learned at t should depend on the (t−1)-th learning

performance. If the (t− 1)-th learning is confident, the

teacher may assign “heavier” curriculum to the learner. In

other words, the teacher should also consider the learn-

er’s feedback to arrange the proper curriculum, which is

a “learning-to-teach” mechanism. Next we will use this

mechanism to adaptively decide q(t) for the t-th curriculum.

As mentioned above, q(t) should be adjusted by consid-

ering the effect of previous learning. However, since the

correctness of the (t−1)-th output saliency is unknown, we

define a confidence score to blindly evaluate the previous

learning performance. Intuitively, the (t−1)-th learning is

confident if the saliency values f
(t−1)
1 , · · · , f (t−1)

q(t−1) are close

to 0 (very dissimilar to seeds) or 1 (very similar to seeds)

after scaling. However, if f
(t−1)
1 , · · · , f (t−1)

q(t−1) are close to the

ambiguous value 0.5, the teacher will rate the last learning

as unsatisfactory, and produce a small q(t) to relieve the

“burden” for the current learning. Therefore, the confidence

(b)(a)
Figure 4. The illustrations of individuality (a) and inhomogeneity

(b). The region s1 in (a) obtains larger individuality than s2, and

s3 in (b) is more inhomogeneous than s4.

score that belongs to [0, 1] is defined by

ConfidenceScore=1− 2

q(t−1)

∑q(t−1)

i=1
min(f

(t−1)
i , 1−f (t−1)

i ),

(12)

and q(t) is finally computed by

q(t) =
⌈∣∣∣C(t)

∣∣∣× ConfidenceScore
⌉
. (13)

3.3. Saliency Propagation

After the curriculum T (t)=
{
s1, s2, · · · , sq(t)

}
is speci-

fied, the learner will spread the saliency values from L(t) to

T (t) via propagation. Particularly, the expression is:

f (t+1) = M(t)D−1Wf (t), (14)

where M(t) is a diagonal matrix with M
(t)
ii = 1 if si ∈

L(t) ∪ T (t), and M
(t)
ii = 0 otherwise. When the t-th

iteration is completed, the labeled and unlabeled sets are

updated as L(t+1) = L(t)∪T (t) and U (t+1) = U (t)\T (t),

respectively. (14) initializes from the binary vector f (0) =(
f
(0)
1 , · · · , f (0)

N

)T
(f

(0)
i = 1 if the i-th superpixel cor-

responds to seed, and 0 otherwise), terminates when U
becomes an empty set, and the obtained saliency value

vector is denoted by f̄ . Finally, we smooth f̄ by driving

the entire propagation on G to the stationary state:

f∗ =
(
I− αD−1W

)−1
f̄ , (15)

where α is a parameter set to 0.99 [27], and f∗ encodes the

saliency information of N superpixels as defined in Section

2.2.

One example of the complete propagation process is

visualized in Fig. 5, in which the superpixels along the

image’s four boundaries serve as seeds to propagate the

saliency information to the remaining superpixels (see Fig.

5(a)). In (b), we observe that the sky regions are relatively

easy and are firstly learned during the 1st∼4th iterations. In

contrast, the land areas are very different from the seeds,

so they are difficult and their diffusion should be deferred.

Though the labeled set touches the land in a very early time

(see the red circle in the 1st iteration), the land superpixels

are not diffused until the 4th iteration. This is because

the background regions are mostly learned until the 4th



iteration, which provide sufficient preliminary knowledge

to identify the difficult land regions as foreground or back-

ground. As a result, the learner is more confident to assign

the correct saliency values to the land after the 4th iteration,

and the target (pyramid) is learned in the end during the

7th∼9th iterations. More concretely, the effect of our

curriculum selection approach is demonstrated in Fig. 5(d).

It can be observed that though the curriculum superpixels

are differently chosen by their informativity, individuality,

inhomogeneity, and connectivity, they are easy to learn

based on the previous accumulated knowledge. Particularly,

we notice that the final integrated result only preserves the

sky regions for the leaner, while discards the land areas

though they are recommended by informativity, individual-

ity, and inhomogeneity. This further reduces the erroneous

propagation possibility since the land looks differently from

the sky and actually more similar to the unlearned pyramid.

Therefore, the fusion scheme (4) and the proper q(t) decided

by the learning-to-teach step are reasonable and they are

critical to the successful propagations (see Fig. 5(c)).

4. Experimental Results
In this section, we qualitatively and quantitatively com-

pare the proposed Teaching-to-Learn and Learning-to-

Teach approach (abbreviated as “TLLT”) with twelve pop-

ular methods on two popular saliency datasets. The twelve

baselines include classical methods (LD [16], GS [23]),

state-of-the-art methods (SS [6], PD [17], CT [13], RBD

[30], HS [25], SF [20]), and representative propagation

based methods (MR [27], GP [5], AM [10], GRD [26]). The

parameters in our method are set to N = 400 and θ= 0.25
throughout the experiments. The parametric sensitivity and

failed cases are also discussed at the end of this section.

4.1. Metrics

Margolin et al. [18] point out that the traditional

Precision-Recall curve (PR curve) and Fβ-measure suf-

fer the interpolation flaw, dependency flaw and equal-

importance flaw. Instead, they propose the weighted pre-

cision Precisionw, weighted recall Recallw and weighted

Fβ-measure Fw
β to achieve more reasonable evaluations.

In this paper, we adopt this recently proposed metrics [18]

to evaluate the algorithms’ performance. The parameter

β2 in Fw
β = (1 + β2) Precisionw+Recallw

β2Precisionw+Recallw
is set to 0.3 as

usual to emphasize the precision [25, 27]. Fig. 6 shows

some examples that our visually better detection results

are underestimated by the existing PR curve, but receive

reasonable assessments from the metrics of [18].

4.2. Experiments on Public Datasets

The MSRA 1000 dataset [16], which contains 1000 im-

ages with binary pixel-level groundtruth, is firstly adopted

for our experiments. The average precisionw, recallw, and

0.736 0.797

0.9550.906

(b) (c)

(a)

Figure 6. The comparison of traditional PR curve vs. the metric

in [18]. (a) shows two saliency maps generated by MR [27] and

our method. The columns are (from Left to Right): input images,

MR results, our results, and groundtruth. (b), (c) present the

PR curves over the images in the first and second rows of (a),

respectively. In the top image of (a), our more confident result

surprisingly receives the similar evaluation with MR reflected by

(b). In the bottom image, the MR result fails to supress the flowers

in the background, but turns out to be significantly better than our

method revealed by (c). In contrast, the weighted Fβ-measure Fw
β

(light blue numbers in (a)) provides more reasonable judgements

and gives our saliency maps higher evaluations (marked by the red

boxes).

Fw
β of all the methods are illustrated in Fig. 8(a). We can

observe that the Fw
β of our TLLT is larger than 0.8, which

is the highest record among all the comparators. Anoth-

er notable fact is that TLLT outperforms other baselines

with a large margin in Precisionw. This is because the

designed teaching-to-learn and learning-to-teach paradigm

propagates the saliency value carefully and accurately. As

a result, our approach has less possibility to generate the

blurred saliency map with confused foreground. In this way,

the Precisionw is significantly improved. More importantly,

we note that the Recallw of our method also touches a

relatively high value, although the Precisionw has already

obtained an impressive record. This further demonstrates

the strength of our innovation.

Although the images from MSRA 1000 dataset have a

large variety in their content, the foreground is actually

prominent among the simple and structured background.

Therefore, a more complicated dataset ECSSD [25], which

represents more general situations that natural images fall

into, is adopted to further test all the algorithms. Fig. 8(b)

shows the result. Generally, all methods perform more

poorly on ECSSD than on the MSRA 1000. However,

our algorithm still achieves the highest Fw
β and Precisionw

when compared with other baselines. RBD obtains slightly
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Figure 5. Visualization of the designed propagation process. (a) shows the input image with boundary seeds (yellow). (b) displays the

propagations in several key iterations, and the expansions of labeled set L are highlighted with light green masks. (c) is the final saliency

map. The curriculum superpixels of the 2nd iteration decided by informativity, individuality, inhomogeneity, connectivity, and the final

integrated result are visualized in (d), in which the magenta patches represent the learned superpixels in the 1st propagation, and the regions

for the 2nd diffusion are annotated with light green.

Input LD GS SS PD RBDCT HS SF MR GP AM GRD TLLT GTTLLT

Figure 7. Visual comparisons of saliency maps generated by all the methods on some challenging images. The ground truth (GT) is

presented in the last column.

(a)(a) (b)
Figure 8. Comparison of different methods on two saliency detec-

tion datasets. (a) is MSRA 1000, and (b) is ECSSD.

lower Fw
β than our method with 0.5215 compared to 0.5284,

but the weighted precision is not as good as our approach.

Besides, some methods that show very encouraging perfor-

mance under the traditional PR curve metric, such as HS,

SF and GRD, only obtain very moderate results under the

new metrics. Since they tend to detect the most salient

regions at the expense of low precision, the imbalance

between Precisionw and Recallw will happen, which pulls

down the overall Fw
β to a low value. Comparatively, TLLT

produces relatively balanced Precisionw and Recallw on

both datasets, therefore higher Fw
β is obtained.

The average CPU seconds of evaluated methods for pro-

cessing one image in ECSSD are summarized in Tab. 1, on

an Intel i5 3.20GHz CPU with 8GB RAM. our method takes

2.31 seconds per detection, which is slower than GS, RBD,

HS, SF, MR, AM, GRD, but faster than LD, SS, PD, CT,

and GP. Because our method needs to decide the suitable

curriculum in every iteration, it needs relatively longer

computational time. The iteration times for a normal image

under our parametric settings are usually 5∼15. However,

better results can be obtained as shown in Fig. 8, at the cost

of more computational time.



Table 1. Average CPU seconds of all the approaches on ECSSD dataset

Method LD GS SS PD CT RBD HS SF MR GP AM GRD TLLT

Duration (s) 7.24 0.18 3.58 2.87 3.53 0.20 0.43 0.19 0.87 3.22 0.15 0.93 2.31

Code matlab matlab matlab matlab matlab matlab C++ matlab matlab matlab matlab matlab matlab

(a) (b)
Figure 9. Parametric sensitivity analyses: (a) shows the variation

of Fw
β w.r.t. θ by fixing N = 400; (b) presents the change of Fw

β

w.r.t. N by keeping θ = 0.25.

To further present the merits of the proposed approach,

we provide the resulting saliency maps of evaluated meth-

ods on several very challenging images from the two

datasets (see Fig. 7). Though the backgrounds in these

images are highly complicated, or very similar to the fore-

grounds, TLLT is able to generate fairly confident and

clean saliency maps. In other words, TLLT is not easily

confused by the unstructured background, and can make a

clear distinction between the complex background and the

regions of interest.

4.3. Parametric Sensitivity

There are two free parameters in our algorithm to be

manually tuned: Gaussian kernel width θ and the amount of

superpixels N . We evaluate each of the parameters θ and N
by examining Fw

β with the other one fixed. Fig. 9 reveals

that Fw
β is not sensitive to the change of N , but heavily

depends on the choice of θ. Specifically, it can be observed

that the highest records are obtained when θ = 0.25 on both

datasets, so we adjust θ to 0.25 for all the experiments.

4.4. Failed Cases

Though the proposed TLLT achieves very impressive

results in most cases, it may fail if 1) the target is extremely

similar to the background which significantly confuses the

propagation; and 2) the generated convex hull completely

misses the salient object. The two examples corresponding

to above situations are presented in Fig. 10. In Fig. 10(a),

the color of the target is very close to the background,

therefore the generated saliency map (Fig. 10(b)) is far

from perfect even though the seed superpixels are correc-

t. In Fig. 10(c), the convex hull encloses the non-target

regions, so the real targets are not precisely detected in

the final saliency map (Fig. 10(d)). However, this case

seldom occurs according to the extensive experiments in

prior works [5, 24, 26]. The failure rates of the convex

(a) (b)

(c) (d)
Figure 10. Failed cases of our method. (a) shows an example that

the object is very similar to the background, in which the correct

seed superpixels are marked with magenta. (b) is the imperfect

saliency map corresponding to the image in (a). In (b), the targets

are completely missed by the convex hull (blue polygon), which

leads to the detection failure as revealed by (d).

hull in MSRA 1000 and ECSSD are 6/1000 and 12/1000,

respectively. Actually, the two listed situations 1) and 2)

are also challenging for the existing saliency algorithms.

5. Conclusion
This paper proposed a novel approach for saliency prop-

agation through leveraging a teaching-to-learn and learning-

to-teach paradigm. Different from the existing methods

that propagated the saliency information entirely depending

on the relationships among adjacent image regions, the

proposed approach manipulated the propagation sequence

from simple regions to difficult regions, thus leading to

more reliable propagations. Consequently, our approach

can render a more confident saliency map with higher back-

ground suppression, yielding a better popping out of objects

of interest. Our approach is inspired by the theoretical

results in educational psychology, and can also be under-

stood from the well-known physical diffusion laws (please

see supplementary material). Future work may study

accelerating the proposed method and meanwhile exploring

more insightful learning-to-teach principles.
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