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Abstract

Recently, hashing based approximate nearest neighbor
(ANN) search has attracted much attention. Extensive new
algorithms have been developed and successfully applied to
different applications. However, two critical problems are
rarely mentioned. First, in real-world applications, the da-
ta often comes in a streaming fashion but most of existing
hashing methods are batch based models. Second, when the
dataset becomes huge, it is almost impossible to load all the
data into memory to train hashing models. In this paper, we
propose a novel approach to handle these two problems si-
multaneously based on the idea of data sketching. A sketch
of one dataset preserves its major characters but with sig-
nificantly smaller size. With a small size sketch, our method
can learn hash functions in an online fashion, while need-
s rather low computational complexity and storage space.
Extensive experiments on two large scale benchmarks and
one synthetic dataset demonstrate the efficacy of the pro-
posed method.

1. Introduction
With the rapid advance of digital devices and Internet,

we are entering the age of big data. The ubiquitous large
scale datasets pose significant challenges to the traditional
machine learning and computer vision. For example, near-
est neighbors (NN) search is a critical component in many
learning algorithms such as clustering, retrieval and match-
ing [3]. However, as the dataset becomes huge, exhaustive
NN search is prohibitive because of the high complexity in
both time and storage. As an alternative, hashing based
approximate nearest neighbors (ANN) search has attract-
ed much attention recently, owing to its efficiency in both
search speed and storage.

In hashing based ANN approaches, data in the original
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space is embedded to binary codes in the Hamming space
with hash functions. The goal is to approximate the input
distance with the Hamming distance which can be calculat-
ed extremely fast with XOR operation in modern CPU. Ear-
ly works, such as Locality Sensitive Hashing (LSH) [14, 2],
construct hash functions based on random projection. These
data-independent methods often require long code length
to achieve acceptable search accuracy. To overcome this
problem, recent research attentions have been shifted to
data-dependent hashing techniques. Representative work-
s include Iterative Quantization (ITQ) [9], Isotropic Hash-
ing (IsoH) [17], Spherical Hashing (SpH) [12] and so on
[25, 19, 24]. In these methods, rather than randomly gen-
erated, hash functions are learned from data distribution or
supervised information. The learning process is driven by
a core principle, i.e., similar samples in the original space
should have close codes. Although promising results have
been obtained by these hashing methods for ANN search,
two critical problems are seldom mentioned.

First, in many real-world applications, data becomes
available continuously in streaming fashion. For example, a
search engine company like Google has numerous new web
pages and images continuously arriving at the data centers
every day. In such environments, the queries must be an-
swered continuously, based on the total data that has arrived
so far. However, most of the existing hashing models are
based on a batch learning fashion. That is to say, when new
data arrives, they have to accumulate all the available data
and re-train new hash functions, which is apparently a less
efficient learning manner for streaming data. This problem
poses us the first challenge, i.e., how to learn from the newly
arrived data which is available after the hash functions have
already been generated from previous dataset.

Second, for truly large scale datasets, data is usually s-
tored on a distributed disk group and is too large to be read
into memory. Actually, it is even not possible to load the da-
ta crawled in one day by Google into memory, let alone all
the data. Moreover, one processor is often incapable of han-



dling the large scale datasets in a feasible amount of time.
For example, for data matrix X ∈ Rd×n, its PCA transform
needs a time complexity of O(nd2+d3) which is infeasible
when n and d are too large. This poses us the second chal-
lenge, i.e., how to overcome the scalability problem in the
hash function learning process.

More generally, the first challenge mentioned above is
targeted by online learning. The goal of online learning
is to produce a sequence of hypotheses where the current
hypothesis describes all data available so far, but depend-
s on only the current training data [30]. Extensive algo-
rithms and architectures about this topic have been proposed
[29, 23, 10, 4, 20], but seldom been introduced to hash func-
tion learning. To the best of our knowledge, the only work
which attempted to learn hash function online was proposed
in [13].

In this paper, we propose a novel online hashing ap-
proach to address the two problems mentioned above simul-
taneously. The proposed method, named as online sketch-
ing hashing (OSH), is of online learning fashion, and allows
a dramatic reduction in computation and storage overhead.
Our work is largely inspired by the idea of “data sketching”
[21, 18]. A sketch of one dataset preserves the main proper-
ty of interest but with a significantly smaller size, such that
computations can be performed on the sketch rather than
the whole dataset without much loss of information [21].
Our approach maintains a small size sketch for the stream-
ing data online, and we demonstrate that the hash functions
can be efficiently learned based on this sketch. To over-
come the mean-varying problem in online hash function
learning, we propose a new sketching algorithm for zero-
meaned stream data. Extensive experiments demonstrate
that our method can keep the performance comparable to
batch learning based methods even when only a very small
sketch is maintained, and outperform existing online hash-
ing method in both accuracy and efficiency.

2. Related Work

In this section, we briefly review some representative
works about online learning and online hashing.

2.1. Online Learning

Although rarely discussed in the area of hashing, online
learning has attracted much attention in machine learning
community. For example, an online version of Bagging and
Boosting was proposed in [29] to adapt the original Ad-
aBoost and Bagging algorithms for learning from the stream
data. The online Boosting [29] was further applied to ob-
tain an online feature selection approach [10]. In [32], the
authors proposed an online learning strategy for SVM, in
which only the support vectors are preserved in each online
step and added into the training set for next step.

A family of online learning methods for regression, bina-
ry classification, uniclass prediction, multiclass prediction
and sequence prediction tasks were presented in [4] based
on the “Passive-Aggressive (PA)” idea. Taking the bina-
ry classification as an example, the general concept of PA
is that upon arrival of a new example, the new classifier
should be constructed in such a way that it remains as close
as possible to the old one (i.e. passive), while at the same
time minimizes the loss on the new example (i.e. aggres-
sive). Formally, assuming each data x is associated with a
label y, let ⟨xt, yt⟩ denote the labeled example presented to
algorithm at round t. The classifier used in the algorithm
on last round is denoted as wt−1, then the objective of PA
algorithm can be formulated as:

wt = arg min
w

1

2
∥w − wt−1∥2 + Cξ

s.t. L(w; ⟨xt, yt⟩) ≤ ξ and ξ ≥ 0 (1)

where L(w; ⟨x, y⟩) is some kind of predefined loss function,
e.g. hinge loss, on one example. C is a positive parameter
which controls the influence of the “aggressive” term.

2.2. Online Hashing

To the best of our knowledge, online kernel-based hash-
ing (OKH) [13] is the only work which attempts to learn
hash functions online. Inspired by [4], the proposed OKH
adapts the hash function accommodate to each new pair
of data along the line of “Passive-Aggressive” method [4].
Given a new pair of data (xt

i, x
t
j) and their similarity label

sij ∈ {−1,+1} at round t, OKH updates the hash function
so that it can fit the newly available data pair and meanwhile
coincide to the old one. Formally, denoting the hash func-
tion learned on last round as W t−1 (a matrix), the objective
of online hashing in [13] can be formulated as:

W t = arg min
W

1

2
∥W −W t−1∥2F + Cξ

s.t. L(W ; ⟨(xt
i, x

t
j), sij⟩) ≤ ξ and ξ ≥ 0 (2)

where L(W ; ⟨(xi, xj), sij⟩) is the predefined loss function
defined on a pair of labeled data and C is a control parame-
ter. Comparing Eq.(2) with Eq.(1), it is easy to find they are
very similar. OKH extends the PA framework into online
hashing with a different definition of loss function L.

The OKH algorithm deals with only a pair of new avail-
able samples at a time. In the worst case, the hash functions
will be updated once for every pair of new samples, which
is often less efficient in practice. Furthermore, it assumes
the availability of a similarity label for the new data pair,
which is often expensive to obtain in practice.

3. The Proposed Method
In this work, we assume that the data is available in

a stream form. Let Di denote the data chunk received



at round i, where i = {1, 2, · · · }. In particular, Di =
[xi

1, x
i
2, · · · , xi

mi
] ∈ Rd×mi contains mi samples, and each

xj ∈ Rd is a data of d dimension. The mean of the da-
ta chunk Di is denoted by Di. Let Xt denote the da-
ta matrix accumulated from round 1 to round t, namely,
Xt = [D1,D2, · · · ,Dt]. The size of Xt is d × nt where
nt =

∑t
i=1 mi is the number of data available till round t.

µt is the mean of data in Xt. ∥ · ∥F denotes the Frobenius
norm of a matrix. ∥ · ∥2 denotes the spectral norm of a ma-
trix. One highlight of online learning is that when learning
new information at round t, the algorithm should not access
the previously seen data D1, · · · ,Dt−1.

3.1. Preliminary

Putting aside for the moment the problem that data
comes as a stream, suppose we have a d × n matrix X =
[x1, x2, · · · , xn] where each column xi is a sample in the
dataset. Let H = [h1, h2, . . . , hr] denote a sequence of r
hash functions. For simplicity, following many other hash-
ing works [2, 33, 9, 17, 27], we use linear projection cou-
pled with mean thresholding as a hash function. Specifical-
ly, given a projection vector wk ∈ Rd, the kth hash function
is defined as:

hk(x) = sgn(wT
k x+ bk) (3)

where bk is the negative mean of the projected data, i.e.
bk = − 1

n

∑n
j=1 w

T
k xj , and therefore the hash function can

be rewritten as:

hk(x) = sgn(wT
k (x− µ)) (4)

where µ = 1
n

∑n
j=1 xj is the mean of all the data.

For the binary codes to be efficient, as indicated in [34],
typically two requirements should be satisfied: (1) each bit
has a 50% chance to be +1 or -1, i.e.

∑
i hk(xi) = 0, k =

1, 2, · · · , r; (2) different bits are independent of each oth-
er. For the first requirement, Wang et al. [33] have proved
that the constraint

∑
i hk(xi) = 0 is equivalent to maximiz-

ing the variance for the k-th bit. The second “independent”
requirement is relaxed to the pairwise decorrelation of bits
in [34], and further relaxed to the orthogonality constraints
of the projection directions {w1, w2, · · · , wr} in [33]. De-
note W = [w1, w2, · · · , wr] ∈ Rd×r, by dropping the non-
differentiable sgn(·) function, then the objective can be for-
mally written in a matrix form as:

max
W∈Rd×r

tr(WT (X − µ)(X − µ)TW )

s.t. WTW = Ir (5)

where the notation (X −µ) means the matrix [x1−µ, x2−
µ, · · · , xn − µ], which is equivalent to centering the data.
This objective function is exactly the same as that of Princi-
pal Component Analysis (PCA). The optimized projection
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Figure 1. The mean average precision of LSH [2] and ITQ [9]
with Hamming ranking on CIFAR-10 dataset. Two versions of the
algorithm are reported. In the first version (dashed line), the data
is not zero-meaned before training. In the second version (solid
line), data is zero-meaned. The two versions share completely the
same parameters in the experiments.

W can be obtained by solving the top r eigenvectors corre-
sponding to the r biggest eigenvalues of the data covariance
matrix1 (X−µ)(X−µ)T . For convenience, we denote the
covariance matrix of X as cov(X) below. Nevertheless, di-
rectly using the optimized W as hash projections will result
in the unbalance problem, i.e., most of the information is in-
cluded in the top eigenvectors [17]. We leave this problem
to detail and handle it in Section 3.2.

In many existing hashing works, the data is first normal-
ized to have zero mean before training [33, 9], or assumed
to be inherently zero-centered, then bk = 0 for any hash
function hk(x). The objective comes to a slighter form:

max
W∈Rd×r

tr(WTXXTW ) s.t. WTW = Ir (6)

It is worth noting that the zero-mean normalization step will
largely influence the performance of hashing algorithms. As
can be seen in Fig.1, with a zero-mean normalization to the
data, whether the data-independent method LSH [2] or a
more sophisticated data-dependent method like ITQ [9] will
get a substantial improvement over the version in which da-
ta is not normalized. As we will find in the next subsection,
the zero mean property is critical when it comes to design-
ing an online hashing method based on data sketching.

3.2. Online Hashing via Data Sketching

The model in Eq.(5) described above is a fairly funda-
mental and effective one among the data-dependent hash-
ing methods. However, two major limitations inhibit its use
in practical applications: (1) It is obviously a batch based

1This is a slight abuse of notation. In statistics covariance matrix is
defined as 1

n−1
(X − µ)(X − µ)T , but in this paper we just ignore the

scale factor 1
n−1

and define the matrix (X − µ)(X − µ)T as covariance
matrix in order to simplify the presentation.



learning method. Upon the arrival of new data chunk, the
model has to accumulate it with the old ones and then re-
train the hash functions. (2) When the data size n and data
dimension d are too large, it is prohibitive to load all the
data into memory. It is also infeasible to calculate the co-
variance matrix cov(X) and its eigen-decomposition. Next
we propose a novel approach to overcome these two limita-
tions simultaneously based on the idea of “data sketching”.

3.2.1 Online Data Sketching

Overall speaking, a sketch of matrix P is another matrix Q
which is much smaller than P , but still preserves the prop-
erties of interest. In this way, the storage of the sketch Q
will be much easier, and the computations can be performed
much faster than with the original P [18, 8, 21]. Formally,
given a matrix P ∈ Rd×n, we aim to maintain a much s-
maller matrix Q ∈ Rd×l with l≪ n as an approximation to
P . The goal is to track an ε-approximation to the norm of
matrix along any direction, i.e.,

∀x, ∥x∥ = 1 |∥PTx∥2 − ∥QTx∥2| ≤ ε∥P∥2F (7)

Since ∥x∥ = 1, it can be viewed as a direction in the space.
This guarantees that in any direction x, P and Q are close,
where the closeness is defined by the Frobenius norm of P .

Owing to its importance, the data sketching problem has
been carefully investigated in the literature. An extensive
body of algorithms exist, including CUR decomposition
[5], random projection [31, 22], column sampling method
[7, 1], and Nyström method [6]. However, most of these
methods are not streaming algorithms because they need
several passes over the input matrix. The latest significant
effort is represented by Frequent Directions (FD) proposed
by Liberty [21]. Inspired by the works in finding frequen-
t items, Liberty investigated how to apply the Misra-Gries
technique [26] to matrix sketching.

The FD method can be summarized in Algorithm 1. The
input to the algorithm is a d×n data matrix P and sketching
size l. Each column Pi of matrix P represents a sample
in the dataset. Columns from P will replace the all zero
valued columns in Q. Once there is no zero valued column
in Q, half of columns in the sketch will be emptied with two
steps. First, the sketch is rotated from right with the SVD
decomposition of Q so that its columns are orthogonal and
in descending magnitude order.2 Note that this step does not
lose anything since for C = US we have QQT = CCT . In
the second step, the Misra-Gries technique [26] is used to

2In [21], the sketch size l is implicitly assumed to be smaller the data
dimension d. Therefore, the SVD decomposition of Q will have the form
as Q = USV T where U ∈ Rd×l, V ∈ Rl×l and S is a l × l diagonal
matrix. Obviously, UTU = V TV = V V T = Il and so that V can be
seen as rotation matrix. Besides, l/2 is assumed to be an integer. In this
paper, we follow these assumptions as in [21] in the next sections.

Algorithm 1 Frequent Directions (Liberty [21])
Input: Data matrix P ∈ Rd×n, sketch matrix Q ∈ Rd×l.
Output: Sketch matrix Q.

if Q not exists then
Q←− all zeros d× l matrix

end if
for each column Pi in P , do

Insert Pi into a zero valued column of Q
if Q has no zero valued columns then
[U, S, V ] = SVD(Q)
\\ C = US [just for notation]
Set δ = s2l/2 [the squared (l/2)th entry of S]
Set Ŝ =

√
max(S2 − Ilδ, 0)

Q = UŜ
end if

end for

reduce half of singular values in S to be zero. Accordingly,
the right half of columns in UŜ will be all zeros.

Despite the algorithm’s apparent simplicity, it needs a
great of effort to provide tight bounds for its performance
[21]. Formally, we have the following lemma:
Lemma 1. (Liberty [21]) Apply Algorithm 1 to matrix P
to obtain a sketch Q with prescribed l, then

∀x, ∥x∥ = 1 0 ≤ ∥PTx∥2−∥QTx∥2 ≤ 2

l
∥P∥2F (8)

or
0 ≤ ∥PPT −QQT ∥2 ≤

2

l
∥P∥2F (9)

Proof. The proof can be referred in [21].
Note that the FD algorithm works in a streaming fashion

as only one pass to the data is required. In other words, the
input matrix P can be a streaming matrix for a stream of
data. This property, we believe, can be very useful for the
online learning. However, specific to our hashing problem,
it will encounter some difficulties by directly applying the
algorithm, as we will see in the next section.

3.2.2 Zero Mean Sketching

In this paper, we attempt to employ the favorable proper-
ty that PPT ≈ QQT in [21] to handle the scalability and
streaming data issue in hashing. A very straightforward way
is sketching the matrix X − µ in Eq.(5) with Algorithm 1
so that we can get a significantly smaller sketch Y which
approximates X − µ well with

Y Y T ≈ (X − µ)(X − µ)T (10)

However, this simple method is infeasible for online hash-
ing. This is because the data is continuously changing,
and therefore the mean of data µ changes too. When a



new data chunk Dt arrives at round t, since the mean of
the dataset changes to µt, we need to re-sketch all the data
[D1 − µt,D2 − µt, · · · ,Dt − µt].

To give a more intuitive understanding about this prob-
lem, let’s consider a simple example. At the first round,
we have a data chunk D1 with mean as µ1 = D1, then the
zero-meaned data at this time is D1 − µ1. After sketching
this zero-meaned matrix into a much smaller one as Y1 with
Algorithm 1, we get the next chunk D2. At this time, the
mean of the dataset will change to µ2 = m1D1+m2D2

m1+m2
. Ob-

viously, µ2 ̸= µ1 and the zero-meaned data will change
to [D1 − µ2,D2 − µ2]. Although we have already s-
ketched D1 − µ1 with Y1, it is useless now because the
mean of data has changed. We have to re-sketch the ma-
trix [D1 − µ2,D2 − µ2]. That is to say, the algorithm needs
to have access to D1 again at the second round, which does
not meet the requirement of online learning.

We now show how this problem can be overcome. Re-
call that Xt = [D1,D2, · · · ,Dt] denotes the data matrix
accumulated from round 1 to round t, µt is the mean of
the data in Xt and nt is the data size. Intuitively, in order
to avoid the mean-varying problem, one can augment every
data chunk with a virtual sample [23], which is carefully
chosen to correct the time-varying mean. Specifically, for a
stream Xt we design a matrix Et as:

Et = [D1 −D1, D2 −D2,

√
n1m2

n1 +m2
(D2 − µ1), · · · ,

Di −Di,

√
ni−1mi

ni−1 +mi
(Di − µi−1), · · · ,

Dt −Dt,

√
nt−1mt

nt−1 +mt
(Dt − µt−1)]

or for simplicity let

D̂1 = D1 −D1,

D̂i = [Di −Di,

√
ni−1mi

ni−1 +mi
(Di − µi−1)] (11)

then
Et = [D̂1, D̂2, · · · , D̂t] (12)

The essence of the designing of D̂i is to augment the
zero-meaned data chunk Di −Di with an additional vector√

ni−1mi

ni−1+mi
(Di − µi−1) which can be viewed as a virtual

sample. Also note that each component D̂i in Et depends
on the mean of previous chunks which can be easily main-
tained and updated with

µi =
ni−1µi−1

ni−1 +mi
+

miDi

ni−1 +mi
(13)

Lemma 2. For any i ≥ 2, we have

cov(Xi) = cov(Xi−1) + D̂iD̂i

T
(14)

Algorithm 2 Zero Mean Sketching
Input: Streaming data chunk D1,D2, · · · ,Dk,

All zeros matrix Y of size d× l.

1: Sketch D1 −D1 into Y with Algorithm 1
2: n← m1 and µ← D1

3: for i = 2 : k, do
4: Sketch [Di −Di,

√
nmi

n+mi
(Di − µ)] into Y

5: µ← nµ
n+mi

+ miDi

n+mi
[update the data mean]

6: n← n+mi [update the data size]
7: end for

Proof Sketch. It is easy to find that

cov(Xi) = (Xi−1 − µi)(Xi−1 − µi)
T︸ ︷︷ ︸

term I

+(Di − µi)(Di − µi)
T︸ ︷︷ ︸

term II

With some algebraic manipulation, we have

term I = cov(Xi−1) + ni−1(µi−1 − µi)(µi−1 − µi)
T

term II = (Di −Di)(Di −Di)
T +mi(Di − µi)(Di − µi)

T

Plugging Eq.(13) into both terms will lead to the equation
in Eq.(14).

Moreover, with the definition of Et in Eq.(12) and Lem-
ma 2, we come to the following proposition:
Theorem 3. For any round t, we have

EtE
T
t = cov(Xt) (15)

Proof. Because D̂1D̂1

T
= cov(X1), we have

EtE
T
t = D̂1D̂1

T
+ D̂2D̂2

T
+ D̂3D̂3

T
+ · · ·+ D̂tD̂t

T

= cov(X1) + D̂2D̂2

T
+ D̂3D̂3

T
+ · · ·+ D̂tD̂t

T

= cov(X2) + D̂3D̂3

T
+ · · ·+ D̂tD̂t

T
(Lemma 2)

= cov(X3) + · · ·+ D̂tD̂t

T
· · · · · ·

= cov(Xt−1) + D̂tD̂t

T

= cov(Xt)

This completes the proof.

Theorem 3 implies that if we can find a sketch Yt which
approximates Et well with YtY

T
t ≈ EtE

T
t at any round t,

then we can also obtain a proper approximation to the co-
variance matrix of Xt since EtE

T
t = cov(Xt). This is ex-

actly what we want because, as we have demonstrated, ap-
proximating the covariance matrix of Xt online is difficult
due to the mean-varying problem. Based on these results,
we propose a new sketching method for hashing in Algo-
rithm 2. Our algorithm works in a streaming fashion. Now
we give a relative bound for the approximation of cov(Xt).



Theorem 4. If Yt is the result of applying Algorithm 2 to
the stream data Xt with prescribed sketch size l, then:

0 ≤ ∥cov(Xt)− YtY
T
t ∥2 ≤ 2∥Xt − µt∥2F /l (16)

Proof. As we have proved above, cov(Xt) = EtE
T
t , then

according to Lemma 1,

0 ≤ ∥cov(Xt)− YtY
T
t ∥2 ≤ 2∥Et∥2F /l (17)

On the other hand, with some simple derivation, one can
show that

∥Et∥2F = trace(EtE
T
t )

= trace(cov(Xt))

= trace((Xt − µt)(Xt − µt)
T )

= ∥Xt − µt∥2F (18)

Combining the results in Eq.(17) and Eq.(18) completes the
proof.

3.2.3 Online Hash Function Learning

After applying Algorithm 2 to the streaming data Xt, we
can obtain a sketch Yt ∈ Rd×l with l≪ n at round t so that
YtYt ≈ cov(Xt). Accordingly, the objective in Eq.(5) can
be rewritten as

max
Wt∈Rd×r

tr(WT
t YtY

T
t Wt) s.t. WT

t Wt = Ir (19)

where Wt is the hash projections at round t. The optimized
Wt can be obtained by concatenating top r eigenvectors of
YtY

T
t (i.e. top r left singular vectors of Yt). However, the

eigen-decomposition of YtY
T
t leads to a time complexity of

O(d3), which is prohibitive when d is very large.
In this work, we follow the assumption in [21] that l ≤ d.

As we will find in the experiments, typically l = 200 is
sufficient to achieve comparable results. When d is too large
(d≫ l), Yt will be a very “tall” matrix. For a matrix of this
form, an efficient variant of SVD decomposition exists. The
variant, denoted as RSVD, includes three major steps [15]:

(1) Compute the QR decomposition of Yt ∈ Rd×l as
Yt = QR, in which the columns of Q ∈ Rd×l are
orthogonal and R ∈ Rl×l is an upper triangular matrix
(with O(dl2) complexity).

(2) Compute the SVD of R as R = U1SV
T (with O(l3)

complexity).
(3) Compute U = QU1 then U is the union of eigenvectors

of YtY
T
t (with O(dl2) complexity).

Specific to our problem, the optimized Wt is just the left r
columns of U . The time complexity of RSVD is O(dl2+l3),
which is much more efficient than original O(d3) as d≫ l.

On the other hand, it will lead to the unbalance prob-
lem if the optimized Wt is directly used to be hash projec-
tions [17, 9]. Most of the information is contained in the
most significant eigenvectors while the remainders are of-
ten noisy. This can be relieved by applying a rotation to
Wt. For example, Gong et al. learned a rotation to mini-
mize the quantization error [9]. In this paper, we apply a
random rotation R ∈ Rr×r to the learned Wt so that the
hash projections become WtR. One fact motivates us to
make this choice, that is, in order to learn a rotation the
algorithm like ITQ [9] needs the whole original training da-
ta but in our online learning setting only a sketch exists.
Besides, the learning-free random rotation is more efficient
and favorable to multi-table lookup as in LSH.

3.3. Complexity Analysis

Here we analyze the complexity of our online sketch-
ing hashing. Assuming there is a stream of data chunk
D1,D2, · · · ,Dt, we need to learn new hash functions at ev-
ery round i = 1, 2, · · · , t. We analyze the accumulated time
complexity and space complexity of hash function learning
from round 1 to round t.
Time complexity: Since the sketching step is in a stream
fashion, as indicated in [21], the overall time complexity of
this step is O(ntdl), where nt is the number of accumulated
data at round t. For each round, the complexity of learning
Wi is the same as O(dl2 + l3). Therefore, the overall accu-
mulated time complexity is O(ntdl + tdl2 + tl3).
Space complexity: In our work, all the operations are con-
ducted on a d × l sketch of the data, space overhead of
which is O(ld). The RSVD decomposition step occupies
a space of O(ld+ l2) and we need O(dr) space to store the
learned hash projections. The overall space complexity is
O(ld+ l2 + dr).

4. Experiments
In this section, three sets of experiments are conducted

to verify three issues of our online sketching hashing (OS-
H) algorithm as follows: (1) To verify if enough information
has been preserved in the sketch, the proposed OSH algo-
rithm is compared to the state-of-the-art batch based hash-
ing algorithms. (2) To verify the effectiveness and efficien-
cy of OSH under online setting, it is compared to the exist-
ing online hashing algorithm, i.e., online kernel-based hash-
ing (OKH) [13]. (3) To evaluate the scalability of OSH, ex-
periments are conducted on a large scale synthetic dataset.

4.1. Experimental Setting

Datasets: Two large scale benchmarks are employed to e-
valuate the proposed method: CIFAR-103 and GIST-1M4.

3http://www.cs.toronto.edu/˜kriz/cifar.html
4http://corpus-texmex.irisa.fr/



CIFAR-10 consists of 60K 32×32 color images in 10 class-
es, with 6,000 images per class. We extract 512 dimension-
al GIST descriptor [28] to represent each image. GIST-1M
contains one million 960 dimensional GIST descriptors ex-
tracted from random images. For both datasets, we ran-
domly select 1,000 data points as queries and use the rest as
database and training set. For CIFAR-10 dataset, since ev-
ery image in this dataset is assigned a class label, the ground
truth is defined as semantic neighbors based on label agree-
ment. Because there is no semantic ground truth provided
for the GIST-1M dataset, following the same setting as in
[24, 33], top 2 percentile nearest neighbors in Euclidean s-
pace are taken as ground truth.
Evaluation Criterions: To perform fair evaluation, we fol-
low the Hamming ranking search strategy commonly used
in the literature. The retrieval performance is evaluated with
mean average precision (MAP) which is one of the most
comprehensive criterion in retrieval. All the experiments
are conducted in an unsupervised setting. For OKH, we
follow the setting in [13] that two samples are considered to
be similar if their Euclidean distance is within top 5% of the
whole dataset. All the reported results are averaged over 5
independent runs. Our method is implemented with MAT-
LAB and all the experiments are run on an Intel i7-2600 @
3.4GHz CPU with 20GB RAM.

4.2. Comparison to Batch Based Methods

In the first experiment, we want to ensure that the s-
ketching step will not lose too much information necessary
for hash function learning. To verify this, we compare our
method with the batch learning based methods such as ITQ
[9], IsoH [17], AGH [25], SpH [12], KMH [11] and RMMH
[16]. Among them, ITQ, IsoH and our OSH share the same
hashing model in Section 3.1. In this experiment, we as-
sume that all the training data is available and zero-centered
before training. For the proposed OSH, we first find a small
sketch for the full training set and then apply the learning
method in Section 3.2.3 to obtain hash functions. We em-
pirically set the sketch size l to be l = 200 for both datasets.
All the source codes of the baseline methods are provided
by the authors.

Fig.2 shows the MAP scores of all algorithms using
Hamming ranking on two datasets with different code
lengthes. We can clearly observe that the proposed OS-
H achieves comparable accuracy with ITQ and IsoH, and
outperforms other baselines on both datasets. The perfor-
mance of OSH is slightly inferior to the best competitor
ITQ but still acceptable in consideration of the training is
only based on a sketch of size 200. In fact, on GIST-1M the
MAP scores of ITQ, IsoH and OSH are close to each other,
especially when the code size increases. All these results
suggest that the sketching step does not lose much infor-
mation needed for learning hash functions. In addition, the
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Figure 2. Hamming ranking performance: mean average precision
(MAP) of different algorithms with different code lengthes on (a)
CIFAR-10 and (b) GIST-1M. (Best viewed in color)

rotation matrix to the PCA projections in ITQ and IsoH is
learned from the data, while in our method, only a random
rotation is used. The results in Fig.2 demonstrate that ran-
dom rotation is often adequate to balance the information
contained in different PCA projections, which was also ob-
served in [9].

4.3. Comparison to Online Hashing

For the second experiment, we focus on learning hash
functions online for CIFAR-10 and GIST-1M. In the on-
line setting, the training data is divided into multiple data
chunks, which become available as a stream, to simulate
the real-world situations. We compare the proposed method
with OKH [13], which is the only existing online hashing
method thus far. The source code of OKH is provided by
the authors. LSH [2] is also chosen as a baseline, since its
data-independent hash functions can be easily fitted to on-
line setting. For both datasets, the training data is evenly
divided into 100 chunks (e.g. 100 rounds). For CIFAR-10,
we evaluate the MAP scores after each round. However, this
becomes too time consuming for GIST-1M, thus we only e-
valuate the performance selectively on this dataset.

Fig.3 shows the MAP scores at different rounds on two
datasets with 16, 32 and 64 bits codes. It is obvious that
the proposed OSH outperforms both OKH and LSH with a
large margin on both datasets. Moreover, we observe that
for short code length (16 or 32 bits), the performance of
OKH even deteriorates as the number of received chunks
increases. In contrast, our proposed OSH achieves stable
improvement when more and more data chunks are integrat-
ed in the sketch. This is because as more data chunks are
received, the sketch we maintained can reflect the charac-
ters of the whole training set more completely. Regarding
training time comparison, Table 1 shows the accumulated
training time of OKH and OSH with 64 bits from the first
round to the last round. OSH achieves about three times
speed-up on both datasets than OKH, which verifies the ef-
ficiency of our method in online setting.
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Figure 3. (a)(b)(c) Mean average precision (MAP) on CIFAR-10 dataset at each round with 16, 32, 64 bits. (d)(e)(f) MAP on GIST-1M
dataset at each round with 16, 32, 64 bits. (Best viewed in color)

Table 1. Accumulated training time of OKH and OSH (in second)

Dataset CIFAR-10 GIST-1M
OKH 31.96 490.73
OSH 8.23 180.74

4.4. Evaluation on Scalability

Since one of our initial motivations is to make hash func-
tion learning possible when the dataset is too large to be
loaded into memory, it is necessary to validate the scalabil-
ity of the proposed method. To this end, we generate a syn-
thetic dataset consisting of one million samples of 10,000
dimension, denoted as Syn-1M. Assuming 4 byte floating
point numbers, the overall space requirement of this dataset
is 40GB, which exceeds the memory limits of most PCs.
In this experiment we learn hash functions online for this
dataset. The dataset is divided into 100 chunks as before.
Therefore, we only need to deal with 400M data each round,
which can be easily handled by most machines. In the im-
plementation, the sketch size is set to be 100. The accumu-
lated training time for sketching and hash function (64 bits)
learning is about 22 minutes (about 12.86 seconds per data
chunk). Given the high dimension of the data, this time cost
is reasonable and acceptable. The result demonstrates that
the proposed OSH is scalable to massive streaming dataset
even on a common PC.

5. Conclusion and Future Work

In this paper, we proposed a novel online hash function
learning method based on the idea of data sketching. Our
approach maintained a small size sketch for a stream of
data online and then learned hash functions based on this
sketch. Extensive experiments on two real-world dataset-
s and one synthetic dataset demonstrated the superiority of
our method in both accuracy and efficiency.

The online sketch used in this work is designed to ap-
proximate the covariance matrix, so it is well suited to PCA
based hashing. Nevertheless, online sketch for large scale
streaming data is a hot topic in computing theory, where
many other kinds of sketches in terms of various objective
measures have been proposed. For example, online sketches
for algorithms like k-means and k-median have been exten-
sively researched in the literature. These sketches may be
useful for providing online version for other hashing meth-
ods such as [11, 12]. Such extensions can be explored in the
future work.
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