
Random Tree Walk toward Instantaneous 3D Human Pose Estimation

Ho Yub Jung1 Soochahn Lee2 Yong Seok Heo3 Il Dong Yun4

Div. of Comp. & Elect. Sys. Eng.,

Hankuk U. of Foreign Studies

Yongin, Korea, 449-791

jung.ho.yub@gmail.com
1

yun@hufs.ac.kr
4

Dept. of Elect. Eng.

Soonchunghyang U.

Asan-si, Korea, 336-745

sclsch@sch.ac.kr
2

Dept. of Elect. & Comp. Eng.

Ajou University

Suwon, Korea, 336-745

ysheo@ajou.ac.kr
3

Abstract

The availability of accurate depth cameras have made

real-time human pose estimation possible; however, there

are still demands for faster algorithms on low power pro-

cessors. This paper introduces 1000 frames per second pose

estimation method on a single core CPU. A large computa-

tion gain is achieved by random walk sub-sampling. Instead

of training trees for pixel-wise classification, a regression

tree is trained to estimate the probability distribution to the

direction toward the particular joint, relative to the current

position. At test time, the direction for the random walk

is randomly chosen from a set of representative directions.

The new position is found by a constant step toward the di-

rection, and the distribution for next direction is found at

the new position. The continual random walk through 3D

space will eventually produce an expectation of step posi-

tions, which we estimate as the joint position. A regression

tree is built separately for each joint. The number of ran-

dom walk steps can be assigned for each joint so that the

computation time is consistent regardless of the size of body

segmentation. The experiments show that even with large

computation gain, the accuracy is higher or comparable to

the state-of-the-art pose estimation methods.

1. Introduction

The introduction of accurate depth cameras has made hu-

man pose estimation a much more feasible problem, facili-

tating the development of many advanced methods. Among

these are methods using generative models, where a pose

is estimated by minimizing the distance between a human

model and the depth map [14, 29, 9, 10, 27, 28]. This min-

imization often requires a complex optimization and thus

these methods rely heavily on temporal constraints by set-

ting the initial pose as the one from the previous frame.

(a) (b)

Figure 1. The red lines represents the random tree walks trained

to find the head position. The random walk starts from the body

center in (a). In (b), the head position is found with fewer steps by

starting from the chest, which is much closer than the body center.

Moreover, these tracking approaches often additionally re-

quire an accurate human model beforehand.

In contrast, a discriminative approach aims to directly

train the conditional probability of the body part labels or

positions. This enables pose estimation even from a single

depth image, without any initialization from previous frame

and accurate body models [19, 13, 20, 22]. The methods

based on a randomized decision and regression forest have

shown to be effective and efficient, being able to operate in

real-time and on commercial products [16].

Despite their efficiency, there is still demand for even

more improvement. The implementation of Shotton et al.

relies on parallel computation using either a GPU or a multi-

core CPU [19]. These resources are not easily available

in current embedded platform computing devices such as

smart phones, TVs, and tablets. Mobile devices further re-

quire minimal computation to maximize battery life. Also,

more importantly, a pose estimation algorithm has to op-

erate simultaneously with multiple applications and games

which requires larger portion of computational resources

[17]. These trends all support demand for a much more

efficient algorithm.

In this paper, we introduce a simple yet powerful dis-

criminative method for pose estimation from a single depth

image which can operate over 1000 frames per second (fps)

on a single core 3.20 GHz CPU with no additional use of

GPU or SIMD operations. Considering the omission of

parallel computing, the proposed method is over 100 times

more efficient than previous methods.

As with the methods of [19, 13, 20, 5, 21], the pro-

posed method is also based on randomized trees. In previ-

ous methods, the joint position is estimated by aggregating

pixel-wise tree evaluations. Since the body part sizes are all

different, an excessive number of tree evaluations are often

made for a larger body part. Similar to supervised descent

approach [24], we learn to estimate the relative direction

to the joint. Then, at test stage, an initial starting point is

moved towards the joint position by random walk in the di-

rection estimated from the trained randomized regression

trees. We term this process as random tree walks (RTW).

We note that, the specific vector that guides the walk is ran-

domly selected among a set of representative vectors in each

leaf node of the random tree. By reconstructing the joint

position estimation using random walks, we minimize the

number of required samples. Fig. 1 shows an example of

the proposed RTW process to estimate the head position.

We can see the path of the walk as the regression tree guides

the step direction at each point.

Using the RTW, large computational gain is possible

compared to the previous methods [19, 13, 20] because the

regression tree is iteratively evaluated per joint, rather than

per pixel. Furthermore, the kinematic tree of joints can be

leveraged by performing RTWs sequentially, and initializ-

ing the subsequent random walk’s starting point as the es-

timated position of a preceding joint. We construct an op-

timal sequence of joints based on the kinematic tree. The

comparison between Fig. 1 (a) and (b) demonstrates the

effects of different starting points.

By adjusting the step size in RTWs, the required itera-

tions for each joint can be controlled to balance the trade-

off between accuracy, stability, and efficiency. In our ex-

periments, sufficient accuracy and stability is achieved with

only 64 steps. By fixing the number of steps, the compu-

tation time is stable regardless of the depth map size or oc-

clusions in joints. With 15 joints overall in the model, the

total number of RTW steps is under one thousand. In con-

trast, the methods of [19] and [13], that also apply decision

trees, attempt to evaluate all pixels in the human region us-

ing multiple trees.

This paper is organized as follows. We first provide a re-

view of related works in Sec. 2. Then the proposed method

using RTW is presented in Sec. 3, where details of con-

structing the training set, training the regression trees and

the pose estimation algorithm are described. Experimental

evaluation is presented in Sec. 4, including comparison with

the state-of-the-art methods as well as effects of changing

number of random walk steps and step sizes. The paper is

concluded in Sec. 5.

2. Related Work

The marker-less human pose estimation problem is de-

fined by various input data and conditions. The most chal-

lenging is pose estimation from a single color image. Meth-

ods that deal with this problem include poselets [3] and the

mixture-of-parts model [26]. Pose estimation from video

sequences employs additional information such as back-

ground subtraction or body part segmentations. The body

segmented image is used as features, and hashing technique

is used to find examples with similar features and poses

[18]. The human silhouette is an efficient descriptor for 3D

pose recovery [1]. The segmentation also enables smaller

pose search space for body parts [7]. By increasing the

view points, more accurate human extraction is possible,

and the under-constraint issue can be eased [11, 6]. If effi-

cient stereo matching is possible from multi-cameras, poses

are estimated from the depth images [25].

Compared to human segmentation on color images,

depth images provide much more invariant information for

estimation of pose. Thus, methods using active depth cam-

eras have been quite successful. The common strategy is

to use a discriminative model for initialization and a gen-

erative model for tracking. The iterated closest point (ICP)

algorithm, a greedy method for minimizing the distance be-

tween model and depth map, is the basic framework for

tracking [14, 23, 15]. The recent tracking algorithm of [10]

can operate in 125 fps with sub-sampling. Simultaneous

human shape estimation and tracking algorithms were also

introduced [8, 28].

For the problem of model construction and pose from

a single depth image, following discriminative approaches

have been effective. In the work of Shotton et al. [19], mul-

tiple decision trees are traversed for each pixel to find the

body part labels of the pixel. Once the pixels are classi-

fied into body parts, the possible joint positions are found

with multiple mean-shifts. The pixel-wise decision forest

method was furthered extended to regression forests. In-

stead of categorizing the pixels, the positions of joints are

directly estimated from the regression forests by learning

the joint offsets from the pixel positions [13, 20]. Ye et

al. initialized the skeletal frame by alignment and database

look up, and the final pose was refined by minimizing least

least-squares distance [27]. Similarly, Baak et al. estimated

the pose from a single frame by nearest neighbour learning

on extrema points [2].

Since methods for a single image can be applied to each

frame, these methods can be easily applied to video. Par-

allel implementations of these methods have achieved real-

time performance [19, 13] using GPU. A majority of com-

putation resources are committed to pixel-wise body part

classification, in order to obtain sufficient number of classi-

fied pixels for stable mean-shift localization. Longer CPU

time is spent in localizing bigger body parts such as torso.

Although smaller body parts like elbows are important to

pose estimation, a smaller computation resource is allotted.

The offset regression forest can infer hidden or smaller body

parts from other larger body part pixels [13]. However, the

pixel-wise tree traverse on larger body part is still unavoid-

able.

Overall, discriminative methods have an advantage over

the generative tracking methods which require a fairly com-

prehensive human model along with accurate pose estima-

tion in the previous frame. However, compared to the state-

of-art body tracking [10], methods using randomized de-

cision trees for pixel-wise inference often require heavier

computation [19, 13]. Especially when increasing the tree

number to improve generalizability and accuracy [4, 13],

the computational burden on the multiple trees may force a

trade-off between speed and accuracy.

3. Random Tree Walk

This paper follows the problem addressed by Shotton

[19] and Girshick [13]; the pose estimation from a single

depth image using randomized decision trees for discrim-

inative training. The proposed random tree walk (RTW)

can be described as follows. A regression tree is trained

for each human joint in the skeleton. Here, we train the

direction, not the offset, to that particular joint. Also, the

directions are stored as clusters at each leaf node, so that

several representative directions, along with corresponding

probability weights, comprise the output of tree. When esti-

mating the pose, we start a random walk process from some

initial points. At each step in the walk, the regression tree is

traversed to a leaf node where a set of directions can be ob-

tained corresponding to the current point. The step direction

is randomly chosen among this probability set. The walks

are made for a fixed number of steps and the body joint po-

sition is estimated as the expectation of the walk. We note

that the process is equivalent to a memory-less random walk

in 3D space.

For all localization problems, a correct position can be

found if the direction toward the position is known in any

point on the body. Ideally, the direction to all parts should

be trained from all possible positions in the whole body.

(a) (b)

Figure 2. The offset positions are randomly sampled from head

and chest joints. (a) illustrates offset sample range spheres in

green. In (b), the green dots represents offset samples.

This will ensure the correct joint position to be found even

when starting from a random point as in Fig. 1. However,

this is difficult to train and heavily redundant. Rather, a

kinematic tree can be used to reduce the size of regions

required for training and to provide a nearby initialization

point for the RTW such that all steps are approximately

in-line with the skeletal frame. Details of the method are

provided in the following subsections, starting with training

sample collection.

3.1. Training Set Collection and Preparation

The input data is a single depth image I compris-

ing scalar depth measurements of a single segmented hu-

man body. For a set of body depth images {I1, I2, ...},

there are corresponding ground truth skeletal joint posi-

tions {P 1, P 2, ...}. Each ground truth skeletal pose is rep-

resented as 15 body joint positions P = (p1, p2, ..., p15)
with each pj = (x̃, ỹ, z̃), j = 1, ..., 15 representing the 3D

coordinate of the jth joint.

We train a regression tree that represents the direction

toward a particular joint pj from nearby random point. We

thus collect samples of random points from training images

with ground truth joints. For each depth Ii and pj ∈ P i,

offset points q = (x̃+ xo, ỹ+ yo, z̃ + zo) are sampled with

offsets xo, yo, and zo in each axis having uniform distri-

bution between [−distmax, distmax]. We implement rejec-

tion sampling technique to constrain the distance between q
and pj .

The unit direction vector to the joint from an offset point

is found by û = (pj − q)/‖pj − q‖. A training sample S
of regression tree consists of body depth image I , random

offset point q, and the unit direction vector û toward the true

joint position.

S = (I, q, û). (1)

3.2. Training Regression Tree

During training of the regression tree, the training sam-

ples are separated into different partitions using depth im-

age feature and the offset position (I, q). The goal is to find

partitioning binary tree that minimizes the sum of squared

difference of û. The objective function is defined as follows.

Ereg(Q) =
∑

Qs⊂Q

∑

û∈Qs

‖û− ūs‖
2, (2)

ūs =
1

|Qs|

∑

û∈Qs

û, (3)

where Q is a set of partition Qs of training samples, and

it contains all training samples. ūs is the average of unit

direction in the training sample partition Qs.

The training samples are recursively partitioned into the

left and right child nodes denoted as Ql(φ) and Qr(φ), re-

spectively. Here, Ql(φ) ∪ Qr(φ) is the training sample set

at the parent node and Ql(φ) ∩ Qr(φ) = ∅.At each parent

node, a split parameter φ is randomly selected to minimize

the variance at left and right partitions.

φ∗ = argminφ

∑

û∈Ql(φ)

‖û− ū‖2+
∑

û∈Qr(φ)

‖û− ū‖2, (4)

where |Ql(φ)| > Nmin, and |Qr(φ)| > Nmin, (5)

where Nmin minimum cardinality constraint on the sizes of

child nodes. If the minimum size criteria cannot be met, no

further split is considered.

The feature used for partition is defined, similar to that

in [19], as:

fθ(I, x) = dI

(
x+

t1
dI(x)

)
− dI

(
x+

t2
dI(x)

)
, (6)

where parameters θ = (t1, t2) are offsets to the current pixel

coordinate position x. dI(x) is the depth at x. The division

by the depth dI(x) acts as transformation from world space

coordinate to pixel coordinate. As with previous random

forest approaches [19], dI(x) outside of human segmenta-

tion is given a large positive constant value.

Given θ together with threshold τ , φ = (θ, τ) partitions

samples in parent node into left and right subsets Ql and Qr

as:

Ql(φ) = {Si | fθ(I, x) < τ}. (7)

Qr(φ) = Q \Ql(φ). (8)

The split parameters φ are randomly chosen from uniform

distribution. For each selection of φ, the partitions Ql(φ)
and Qr(φ) are evaluated with equation (4), and the best φ∗

is saved as the final split parameters of the node. The split

parameters are found down the tree until the minimum sam-

ple number criteria (5) cannot be met, else until the maxi-

mum number of leaf size is reached. In this paper, the max-

imum leaf size is fixed at 32768. The leaf size of 32768 is

equivalent to level 13 full tree in memory usage.

3.3. KMean Clusters at Leaf Nodes

In order to provide a way to escape local minima, we

provide randomness to the direction selection. In the same

spirit as Markov Chain Monte Carlo (MCMC) optimiza-

tion approaches [12], we rely on the stochastic relaxation

in choosing the unit direction. The training samples at the

leaf nodes Qs are further clustered using K-means algo-

rithm. A leaf node in a regression tree represents a set of

training samples Qs = {S1, S2, S3, ...}. The goal is to con-

struct representative vectors ūk that minimize the variance

V of unit direction vectors û that is defined by

V =
K∑

k=1

∑

û∈Ck

‖û− ūk‖
2, (9)

ūk =
1

|Ck|

∑

û∈Ck

û, (10)

where Ck is the kth cluster of Qs. The clusters are found

using typical K-means algorithm, using random initializa-

tion. Then, the average unit directions ūk are normalized

as ûk = ūk/‖ūk‖. Traversing to the end of tree will pro-

duce a set of unit direction vectors and proportional size of

clusters. Leaf set L is defined as follows:

L = {(
|C1|

|Qs|
, û1), ..., (

|CK |

|Qs|
, ûK),}. (11)

Qs =

K⋃

k=1

Ck. (12)

The direction of the step is chosen randomly from one of

the unit vectors ûk in equation (11).

3.4. The Random Tree Walk Algorithm

Alg. 1 summarizes the proposed RTW algorithm for lo-

calizing a joint position from series of constant steps. The

RTW begins with depth map I , starting position q0, regres-

sion tree Treg, number of steps Ns, and step size dists. The

goal is to find the expectation of the random walk q̄, which

provides position for a single joint.

I is provided by the Kinect camera along with human

segmentation. Treg is trained for a specific joint. Ns and

dists are adjustable parameters which can provide trade-

off between precision and computation time. The efficient

starting position q0 will be varied upon the joint being lo-

calized.

Data: Depth map I , starting point q0, regression tree

Treg, number of steps Ns, and step distance

dists.

Result: The average joint position q̄.

Initialization. m = 0, qsum = (0, 0, 0).
while m < Ns do

Find the leaf node L of Treg using (I, qm).

L = {(|C1|
|Qs|

, û1), ..., (
|CK |
|Qs|

, ûK)}

Randomly select kth cluster with probability

Prob(k) = |Ck|
|Qs|

.

Step into new position using kth direction vector.

qm+1 = qm + ûk · dists.

Update joint position sum qsum += qm+1.

Update m += 1.

end

Compute the joint position by averaging step

positions. q̄ = qsum/Ns.

Algorithm 1: The Random Tree Walk Algorithm

The novelty of the proposed algorithm comes from the

construction of step direction distribution from trained re-

gression tree. The leaf node is found deterministically, but

the direction of the step is chosen randomly from K-mean

clustered unit vectors at the leaf. The kth sampling proba-

bility distribution is determined from the proportional size

of kth-mean cluster. The expectation of sequential step po-

sitions q̄ is estimated as the joint position.

3.5. Kinematic Tree Pose Estimation

Since RTW expectation can operate independently for

each joint, all joint positions can be found in parallel. How-

ever, a sequential estimation will provide better starting

point q0 for each RTW. A starting point closer to the tar-

geted joint position is desired because random tree walk

will reach the joint position faster. With known skeletal

topology, the firstly estimated joint position can provide the

starting point for next adjacent joint.

The 15 joints in skeletal frame are as follows: head,

chest, belly, L/R hip, L/R shoulders, L/R elbows, L/R

wrists, L/R knees and L/R ankles. The placement of the

each joint is illustrated in Fig. 3 (a). The joint positions

are determined sequentially according to the typical skele-

tal topology. The process is illustrated in Fig. 3. First, the

RTW for belly position starts from the body center. Then,

the expectation of RTW p̄ is used as the q0 of next adjacent

joint. An example of the sequential RTW is shown in Fig.

3 (b). Note that the computation for each limb may be pro-

cessed in parallel, if further computational time reduction is

desired.

(a) (b)

Figure 3. The adjacent joint positions can be used as the starting

positions for new RTW. (a) illustrates the kinematic tree imple-

mented along with RTW. First, the random walk toward belly po-

sitions starts from body center. The belly positions (red dot in (a))

become starting point for hips and chest, and so forth. (b) shows

the RTW path examples.

4. Experiments

The RTW approach shows robustness to publicly avail-

able SMMC-10 set [9] and EVAL set [10]. The SMMC-

10 set contains 28 action sequences performed by a single

individual. More recent EVAL set has 3 models perform-

ing 8 sequences each. The EVAL set is more suitable for

our approach because it provides multiple models for train

and test set separation. Three sets of trees are constructed

for each model. The sequences for each model is evalu-

ated using trees trained from other 2 models as in a typical

leave-one-out training scheme. The majority of evaluation

results are obtained from the EVAL set. The SMMC-10 set

contains only a single individual. Thus we constructed our

own training set for the SMMC-10 test set with manually

labelled skeleton positions.

A conventional precision measure for pose estimation al-

gorithms is the 10 cm rule [9, 19, 13]. If the estimated joint

position is within 10 cm of the ground truth, it is consid-

ered correctly estimated. The precision of the estimated

twelve joints on each frame are averaged together to find

mean average precision (mAP). The joints included in the

evaluations are head, chest, L/R shoulders, L/R elbows, L/R

wrists, L/R knees, and L/R ankles. The evaluation joints are

chosen based on the availability of ground truth.

First, the properties of random walk sub-sampling

method are evaluated in terms of step size and step num-

ber. The trade-off between computation time and precision

can be derived from the number of random walks and step

distance. The computation and precision of the proposed

method is compared with previous methods based on both

tracking and discriminative approaches [10, 28, 19, 13].

0.825

0.85

0.875

0.9

0.925

0.95

4 16 64 256

m
A

P

Number of RTW Steps

2cm

5cm

10cm

20cm

Step Sizes

(a) Mean Average Precision (mAP) of the proposed RTW method on

EVAL set [10] with varying step numbers and sizes

0

500

1000

1500

2000

2500

3000

3500

4 16 64 256

fp
s

Number of RTW Steps

2cm

5cm

10cm

20cm

Step Sizes

(b) Frames per seconds (fps) of the proposed RTW method on EVAL set

[10] with varying step numbers and sizes

Figure 4. (a) shows the number of RTW steps versus the mAP for the EVAL sequence. Each line represents different step sizes. The

number of RTW steps versus average fps operation is plotted in (b).

0.75

0.8

0.85

0.9

0.95

(a) mAP for EVAL set

0.8

0.85

0.9

0.95

1

Ye and Yang '14 RTW at 1262 fps

(b) mAP of each joint for EVAL set

0.94

0.945

0.95

0.955

0.96

0.965

(c) mAP on SMMC-10 set

Figure 5. The proposed approach is compared with the recent algorithms using EVAL [10] set in (a) and (b). (a) shows our 3 results in

red with different fps. RTW approach performs slightly higher than Ye and Yang [28] at 1262 fps. Even at 2687 fps, RTW shows higher

precision than Ganapathi et al. [10]. The precisions in each joint are presented in (b). (c) compares results for SMMC-10 test sequence.

Shotton et al. [19], Girshick et al. [13] and our approach are methods for pose estimation from a single image.

4.1. RTW Step Size and Number

Intuitively, larger number of random walk steps will re-

sult in more accurate or otherwise more stable pose esti-

mation. Since the directions of steps are chosen randomly,

there is always a chance for a wrong direction. A large

number of steps will hopefully average out the errors. At

the same time, unnecessary computation time should be

avoided. If a further increase in the number of steps does

not result in significant increase of precision, the saturation

number of steps has been reached.

Different step sizes have different saturation numbers. If

each step is large, the targeted joint position will be reached

quickly, provided that the random direction selections are

mostly correct. If the step size is too large, however, the

random walks may keep stepping over the correct joint po-

sition. The step sizes were varied among 2 cm, 5 cm, 10

cm, and 20 cm in the evaluation as presented in Fig. 4. The

mAP for different step size and number of steps are tested

for the EVAL set. The number of steps are varied from 8,

16, 32, 64, 128, and 256.

Overall, the precision starts to saturate early for larger

step sizes. The saturation number for the step sizes of 2 cm,

5 cm, 10 cm and 20 cm are 128, 64, 32, and 16 respectively.

The highest precision 0.927 is achieved with 5 cm step size

and 128 steps. Similar precision of 0.926 is achieved for 64

and 256 steps with the same step size. The maximum mAP

achieved for different RTW steps are found in Table 1.

The number of steps are plotted against the fps in Fig. 4

(b). The fps was computed by averaging the computation

time over all 24 sequences, 8 sequences per 3 models. At

8 RTW steps per joint, the proposed algorithm can output

2697 fps with 0.870 mAP which is higher than the recent

implementation by Ganapathi et al. [10]. RTW of eight

steps are taken each for 15 joints, translating into 120 (8 ×
15) traversals of level 13 trees.

4.2. Comparison with Existing Methods

The recent state-of-the-art pose tracking algorithm im-

plementation by Ye and Yang showed 0.921 mAP on EVAL

Figure 6. Example results of the RTW from EVAL test data. 64 RTW steps are taken for each joint. The RTW paths are drawn at the top

row, the expectations of RTW steps are used to find joint positions in bottom row. The pose estimation from a single image takes less than

1 millisecond.

steps 8 16 32 64 128 256

mAP 0.870 0.904 0.923 0.926 0.927 0.926

fps 2697 1824 1213 1262 402 224

size 20 cm 10 cm 10 cm 5 cm 5 cm 5 cm

Table 1. EVAL set’s highest precisions are presented for different

RTW step numbers, followed by the corresponding fps and step

sizes. 64 RTW steps with 5 cm size is clocked faster than 32 RTW

steps with 10 cm size. This may be due to CPU’s cache manage-

ment; smaller steps make it more likely to find new feature pixels

in cache.

sequences [28]. Their implementation achieved greater than

30 fps operation using GPU. The pose tracking method by

Ganapathi et al. does not rely on GPU to achieve 125 fps

operation, but the precision is significantly lower [10]. In

Fig. 5 (a), the proposed RTW is compared with these two

methods [10, 28]. RTW is able to obtain slightly higher

precision than Ye and Yang’s state-of-the-art tracking algo-

rithm. In addition, the computation is more than 40 times

faster than their GPU assisted implementation [28].

Another advantage of RTW over previous tracking algo-

rithms comes from the ability to estimate pose from a single

depth image. In our approach, the pose of previous frame

is not used as either the initial pose or a-priori knowledge

for the estimation of pose in current frame. In that regard,

the proper comparison should be made with the single depth

image pose estimation methods of [19, 13]. However, since

their evaluation results for the EVAL set are unavailable,

the older SMMC-10 test sequences are used in the com-

parison test. See Fig. 5 (c). Since SMMC-10 set mostly

contains relatively easy poses, the results of each method

are all fairly high, above 0.94 mAP.

Similar to the EVAL set, the proposed RTW obtains

slightly higher precision for the SMMC-10 set, but the com-

putation gain is significant. The previous methods’ the 8

core CPU implementations run at 50 and 200 fps [19, 13].

In comparison, the proposed RTW run at approximately

1000 fps using a single core CPU, awhile obtaining equal

or higher mAP.

Finally, few qualitative examples from EVAL test se-

quences are shown in Fig. 6. In the figure, 64 RTW steps are

taken with 5 cm step size. Both the RTW paths and RTW

pose expectations are shown. Note that few very hard poses

like hand-stand, crouching, and cross-punch are efficiently

and accurately estimated with RTW.

5. Conclusion

In this paper, RTW approach for 3D pose estimation

problem is proposed, which gives a large computation gain

without decrease in accuracy. The proposed approach

moves away from pixel-wise classification, and applies a su-

pervised gradient descent and MCMC like random sampler

in the form of Markov random walks. By initializing the

starting point to the adjacent joint according to kinematic

tree, we demonstrate a robust and super-real-time pose esti-

mation algorithm.

Acknowledgments

This work was supported by Hankuk University of For-

eign Studies Research Fund of 2015. Also, this research

was supported by Basic Science Research Program through

the National Research Foundation of Korea (NRF) funded

by the Ministry of Education, Science and Technology

(2013R1A1A2A10004550).

References

[1] A. Agarwal and B. Triggs. Recovering 3d human pose from

monocular images. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, 2006.

[2] A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt.

A data-driven ap- proach for real-time full body pose recon-

struction from a depth camera. Proc. Int’l Conf. Computer

Vision, 2011.

[3] L. Bourdev and J. Malik. Body part detectors trained using

3d human pose annotations. Proc. Int’l Conf. Computer Vi-

sion, 2009.

[4] L. Breiman. Random forest. Machine Learning, 45:5–32,

2014.

[5] T. F. Cootes, M. C. Ionita, C. Lindner, and P. Sauer. Ro-

bust and accurate shape model fitting using random forest

regression voting. In Computer Vision–ECCV 2012, pages

278–291. Springer, 2012.

[6] A. Elhayek, C. Stoll, N. Hasler, K. I. Kim, H.-P. Seidel, and

C. Theobalt. Spatio-temporal motion tracking with unsyn-

chronized cameras. Proc. Conf. Computer Vision and Pattern

Recognition, 2012.

[7] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progres-

sive search space reduction for human pose estimation. Proc.

Conf. Computer Vision and Pattern Recognition, 2008.

[8] J. Gall, C. Stoll, E. de Auiar, C. Theobalt, B. Rosenhahn, and

H.-P. Seidel. Motion capture using joint skeleton tracking

and surface estimation. Proc. Conf. Computer Vision and

Pattern Recognition, 2009.

[9] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real

time motion capture using a single time-of-flight camera.

Proc. Conf. Computer Vision and Pattern Recognition, 2010.

[10] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real-

time human pose tracking from range data. Proc. European

Conf. Computer Vision, 2012.

[11] D. M. Gavrila and L. Davis. 3-d model-based tracking of

humans in action: a multi-view approach. Proc. Conf. Com-

puter Vision and Pattern Recognition, 1996.

[12] S. Geman and D. Geman. Stochastic relaxation, gibbs dis-

tribution, and the bayesian restoration of images. IEEE

Trans. Pattern Analysis and Machine Intelligence, 6:721–

741, 1984.

[13] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and

A. Fitzgibbon. Efficient regression of general-activity hu-

man poses from depth images. Proc. Int’l Conf. Computer

Vision, 2011.

[14] D. Grest, V. Kruger, and R. Koch. Single view motion track-

ing by depth and silhouette information. Scandinavian Con-

ference on Image Analysis, 2007.

[15] T. Helten, A. Baak, G. Bharaj, M. Muller, H.-P. Seidel, and

C. Theobalt. Personalization and evaluation of a real-time

depth-based full body tracker. 3DV, 2013.

[16] Microsoft. Kinectsdk. http://www.microsoft.com/en-

us/kinectforwindows/, 2014.

[17] J. Oberg, K. Eguro, R. Bittner, and A. Forin. Random de-

cision tree body part recognition using fpgas. Int’l Conf. on

Field Programmable Logic and Application, 2012.

[18] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose esti-

mation with parameter sensitive hashing. Proc. Int’l Conf.

Computer Vision, 2003.

[19] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose

recognition in parts from single depth images. Proc. Conf.

Computer Vision and Pattern Recognition, 2011.

[20] M. Sun, P. Kohli, and J. Shotton. Conditional regression

forests for human pose estimation. Proc. Conf. Computer

Vision and Pattern Recognition, 2012.

[21] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent

regression forest: Structured estimation of 3d articulated

hand posture. In Computer Vision and Pattern Recogni-

tion (CVPR), 2014 IEEE Conference on, pages 3786–3793.

IEEE, 2014.

[22] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-

vian manifold: Inferring dense correspondences for one-shot

human pose estimation. Proc. Conf. Computer Vision and

Pattern Recognition, 2012.

[23] X. Wei, P. Zhang, and J. Chai. Accurate realtime full-body

motion capture using a single depth camera. SIGGRAPH

ASIA, 2012.

[24] X. Xiong and F. De la Torre. Supervised descent method

and its applications to face alignment. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on,

pages 532–539. IEEE, 2013.

[25] H.-D. Yang and S.-W. Lee. Reconstruction of 3d human

body pose from stereo image sequences based on top-down

learning. Pattern Recognition, 2007.

[26] Y. Yang and D. Ramanan. Articulated pose estimation with

flexible mixtures-of-parts. Proc. Conf. Computer Vision and

Pattern Recognition, 2011.

[27] M. Ye, X. Wang, R. Yang, L. Ren, and M. Pollefeys. Ac-

curate 3d pose estimation from a single depth image. Proc.

Int’l Conf. Computer Vision, 2011.

[28] M. Ye and R. Yang. Real-time simultaneous pose and shape

estimation for articulated objects using a single depth cam-

era. Proc. Conf. Computer Vision and Pattern Recognition,

2014.

[29] Y. Zhu, B. Dariush, and K. Fujimura. Controlled human pose

estimation from depth image streams. Proc. CVPR Workshop

on TOF Computer Vision, 2008.

