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Abstract

This paper concerns action recognition from unseen
and unknown views. We propose unsupervised learning
of a non-linear model that transfers knowledge from mul-
tiple views to a canonical view. The proposed Non-linear
Knowledge Transfer Model (NKTM) is a deep network, with
weight decay and sparsity constraints, which finds a shared
high-level virtual path from videos captured from differ-
ent unknown viewpoints to the same canonical view. The
strength of our technique is that we learn a single NKTM for
all actions and all camera viewing directions. Thus, NKTM
does not require action labels during learning and knowl-
edge of the camera viewpoints during training or testing.
NKTM is learned once only from dense trajectories of syn-
thetic points fitted to mocap data and then applied to real
video data. Trajectories are coded with a general code-
book learned from the same mocap data. NKTM is scalable
to new action classes and training data as it does not re-
quire re-learning. Experiments on the IXMAS and N-UCLA
datasets show that NKTM outperforms existing state-of-the-
art methods for cross-view action recognition.

1. Introduction

Action recognition from videos is a significant research
problem with applications in human-computer interaction,
smart surveillance, and video retrieval. Several techniques
have been proposed for discriminative action representation
such as 2D shape matching [20, 22, 37], spatio-temporal in-
terest points [5,16,27,35], and trajectory-based representa-
tion [30–32, 36]. Especially, dense trajectories-based meth-
ods [30–32] have shown impressive results for action recog-
nition by tracking densely sampled points using optical flow
fields. While these methods are effective for action recogni-
tion from a common viewpoint, their performance degrades
significantly under viewpoint changes. This is because the
same action appears quite different when observed from dif-
ferent viewpoints [25–27].

Figure 1: Existing cross-view action recognition techniques [11,
12, 19, 33, 40] connect source and target views with a set of linear
transformations that are unable to capture the non-linear manifolds
on which real actions lie. Our NKTM finds a shared high-level
non-linear virtual path that connects multiple source and target
views to the same canonical view.

A practical system should be able to recognize human
actions from different unknown and more importantly un-
seen views. One approach for recognizing actions across
viewpoints is to collect data from all possible views and
train a separate classifier for each view. However, this ap-
proach does not scale well as it requires a large number of
labeled samples for each view. To overcome this problem,
some techniques infer 3D scene structure and use geometric
transformations to achieve view invariance [4,8,23,29,39].
These methods often require robust joint estimation which
is still an open problem in real-world settings. Other meth-
ods focus on spatio-temporal features which are insensitive
to viewpoint variations [18, 24, 28, 34]. However, the dis-
criminative power of these methods is limited by their in-
herent structure of view invariant features [38].

Recently, knowledge transfer-based methods [6,7,10,19,
21,40,41] have become popular for cross-view action recog-
nition. These methods find a view independent latent space
in which features extracted from different views are directly
comparable. Such methods are either not applicable or per-
form poorly when recognition is performed on videos from
unknown and, more importantly, unseen views. Recently,
Wang et al. [33] proposed cross-view action recognition
by discovering discriminative 3D Poselets and learning the
geometric relations among different views. However, they
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Figure 2: Framework of the proposed algorithm. A single NKTM is learned once only without using action labels. A general codebook is
also learned during this phase. The NKTM is used to transfer unknown views to their respective canonical view during training and testing
for cross-view action recognition. A linear SVM is used for classification.

learn a separate transformation between different views us-
ing a linear SVM solver. Thus many linear transforma-
tions are learned for mapping between different views. For
action recognition from unknown views, all learned trans-
formations are used for exhaustive matching and the re-
sults are combined with an AND-OR Graph (AOG). This
method also requires 3D skeleton data for training which
is not always available. Gupta et al. [11] proposed to find
the best match for each training video in large mocap se-
quences using a Non-linear Circular Temporary Encoding
method. The best matched mocap sequence and its pro-
jections on different angles are then used to generate more
synthetic training data making the process computationally
expensive. Moreover, this method implicitly assumes that
the mocap dataset covers a wide range of human actions.

In this paper, we approach cross-view action recognition
as a non-linear knowledge transfer learning problem where
knowledge from multiple views is transferred to a single
canonical view. Our approach consists of three phases as
shown in Fig. 2. The first phase is unsupervised learning
where a Non-linear Knowledge Transfer Model is learned.
The proposed NKTM is a deep network with weight decay
and sparsity constraints which finds a shared high-level vir-
tual path that maps action videos captured from different
viewpoints to the same canonical (i.e. frontal) view. The
strongest point of our technique is that we learn a single
NKTM for mapping all actions from all camera viewpoints
to the same canonical view. Thus, action labels are not
required while learning the NKTM or while transforming
training and test actions to their respective canonical views
using the NKTM. In the training phase, actions from un-
known views are transformed to their corresponding canon-
ical views using the learned NKTM. Action labels of train-
ing data are now required to train the subsequent classifier.
In the final phase, actions from unknown and previously un-

seen views are transformed to their corresponding canoni-
cal views using the learned NKTM. The trained classifier is
then used to classify the actions. We used a simple linear
SVM to show the strength of the proposed NKTM. How-
ever, more sophisticated classifiers can also be used.

Our NKTM learning scheme is based on the observation
that similar actions, when observed from different view-
points, still have a common structure that puts them apart
from other actions. Thus, it should be possible to separate
action related features from viewpoint related features. The
main challenge is that these features cannot be linearly sep-
arated. The second challenge comes from learning a non-
linear model itself which requires large training data. Our
solution is that we learn the NKTM from action trajectories
of synthetic points fitted to mocap data. By projecting these
points to different views, we can generate a large corpus of
synthetic trajectories to learn the NKTM. We use k-means
to generate a general codebook for encoding the action tra-
jectories. The same codebook is used to encode dense tra-
jectories extracted from real action videos in the training
and testing phases.

The major contribution of our approach is that we learn
a single non-linear virtual path between all actions and their
respective canonical views irrespective of the initial view-
ing directions of the actions. Thus, the proposed NTKM
can bring any action observed from an unknown viewpoint
to its canonical view. Moreover, our method encodes ac-
tion trajectories using a general codebook learned from syn-
thetic data. The same codebook applies to action trajec-
tories of real videos. Thus, new action classes from real
videos can easily be added using the same NTKM and
codebook. Comparison with five existing cross-view ac-
tion recognition methods on two standard datasets shows
that our method is faster and achieves higher accuracy es-
pecially when there are large viewpoint variations.



2. Proposed Technique
The proposed technique comprises three steps: (1) Fea-

ture extraction, (2) Non-linear Knowledge Transfer Model
(NKTM) learning, and (3) Cross-view action description.

2.1. Feature Extraction

Dense trajectories have shown to be effective for ac-
tion recognition [11, 30–32]. Our motivation for using
dense trajectories is that they can be easily extracted from
videos [30–32] as well as mocap data [11]. To extract
trajectories from videos, Wang et al. [30, 31] proposed to
sample dense points from each frame and track them using
displacement information from a dense optical flow field.
The shape of a trajectory encodes the local motion pattern.
Given a trajectory of length L, a sequence S of displace-
ment vectors ∆Pt � pPt�1�Ptq � pxt�1�xt, yt�1� ytq
is formed as follows:

S � p∆Pt, ...,∆Pt�L�1q, (1)

and then normalized by the sum of the magnitudes of the
displacement vectors:

S Ð S

}S} �
p∆Pt, ...,∆Pt�L�1q°t�L�1

i�t }∆Pi}
. (2)

The descriptor S encodes the shape of the trajectory.
To extract dense motion trajectories from mocap data with
known body joint positions (see Fig. 3(a)), human limbs are
approximated by fitting cylinders over bones i.e. connec-
tions between joints act as axes. Next, a dense grid is laid
on the 3D surface of each cylinder as shown in Fig. 3(b).
Given a camera viewpoint, the points on the 3D surface
which are not visible from the camera are removed by per-
forming back-face culling and hidden point removal [15].
The remaining 3D points are projected orthographically to
the x� y plane as shown in Fig. 3(c)-(e). To extract trajec-
tories, these filtered 2D points are connected in time over a
fixed horizon of L frames and a sequence S of normalized
displacement vectors ∆Pt is calculated for each point (2).

We represent each mocap sequence (and later videos)
by a set of motion trajectory descriptors. We construct a
codebook of size k � 2000 by clustering the trajectory de-
scriptors with k-means. It is important to note that clus-
tering is performed only over the mocap trajectory descrip-
tors. Thus, unlike existing cross-view action recognition
techniques [10–12, 19, 21] the codebook we learn does not
use the trajectory descriptors of training or test videos from
IXMAS [34] or Northwestern-UCLA [33] datasets. We call
this the general codebook. We consider each cluster as a
codeword that represents a specific motion pattern shared
by the trajectory descriptors in that cluster. One codeword
is assigned to each trajectory descriptor based on the mini-
mum Euclidean distance. The resulting histograms of code-

Figure 3: Synthetic data generation from the CMU Motion Cap-
ture dataset [1]: (a) mocap skeleton data, (b) human body shape is
approximated using cylinders between the joint positions, (c)-(e)
sampled body surface points are projected to 3 different views.

word occurrences are used as motion descriptors. Training
and test videos are encoded with the same codebook.

2.2. Non-linear Knowledge Transfer Model

Existing cross-view action recognition methods [6, 11,
19, 21,33, 40] only seek a set of linear transformations con-
necting source and target views (see Fig. 1) and are thus
unable to capture the non-linear manifolds where realis-
tic action videos usually lie on, especially when actions
are captured from different views. Furthermore, these ap-
proaches are either not applicable [6, 19, 21, 40] to unseen
views or require augmented training samples which cover a
wide range of human actions [11]. Moreover, these methods
do not scale well to new data and need to repeat the compu-
tationally expensive learning/training process when a new
action class is to be added. To simultaneously overcome
these problems, we propose a Non-linear Knowledge Trans-
fer Model (NKTM) that learns a multi-step virtual path
between all possible views and their respective canonical
view. Thus the input view is mapped to some intermediate
virtual views along the non-linear path before constructing
the final canonical view.

As depicted in Fig 4, our NKTM is a deep network, con-
sisting ofQ�1 layers (whereQ � 3) and ppqq units in the q-
th layer (where q � 1, 2, � � � , Q). For a given training sam-
ple xi

j P Rk, where xi
j is the j-th sample in i-th view, the

output of the first layer is hp1q � spWp1qxij�bp1qq P Rpp1q ,

where Wp1q P Rpp1q�k is a weight matrix to be learned in
the first layer, bp1q P Rpp1q is a bias vector, and sp�q is a non-
linear activation function (typically a sigmoid or tangent hy-
perbolic). The output of the first layer hp1q is used as the in-
put of the second layer. Similarly, the output of the second
layer is computed as hp2q � spWp2qhp1q � bp2qq P Rpp2q ,
where Wp2q P Rpp2q�pp1q , bp2q P Rpp2q , and sp�q are the
weight matrix, bias, and non-linear activation function of
the second layer, respectively. The output of the last layer
is computed as:



Figure 4: Assume that there are n virtual paths connecting n input
views to the canonical view. We show 4 different virtual paths
for 4 views in (a). NKTM forces these virtual paths to construct
a single non-linear, shared, compact, and high-level virtual path
(dotted line in (b)) which connects all views to the canonical view.

fpxi
jq � hpQq � spWpQqhpQ�1q � bpQqq P RppQq

(3)

where fp�q is a non-linear transformation function de-
termined by the parameters Wpqq and bpqq where q �
1, 2, � � � , Q.

We use this structure to learn a single non-linear transfor-
mation from all possible views to their respective canonical
view. Specifically, in our problem, the inputs to the NKTM
are BoW descriptors of mocap action sequences over dif-
ferent views, while the output is BoW descriptors of mocap
action sequences from the canonical view. The basic idea
of this NKTM is that regardless of the input view, we en-
courage the output of the NKTM to be close to its canonical
view. We explain this idea in the following.

Assume that there is a virtual path which connects any
view to its respective canonical view [19]. Therefore, there
are n different virtual paths connecting n input views to
their canonical view (see Fig. 4(a)). We consider each vir-
tual path as a set of non-linear transformations of action de-
scriptors. Moreover, assume that the videos of the same

action over different views share the same high-level fea-
ture representation. Given these two assumptions, our ob-
jective is to find a virtual path which encodes a shared high-
level feature representation in the paths connecting the in-
put views and the canonical view (see Fig. 4(b)). This es-
sentially means that we start with n different virtual paths
and the proposed NKTM learning forces them to agree on a
single non-linear virtual path.

The learning of the proposed NKTM is carried
out by updating its parameters θK � tθW, θbu,
where θW � tWp1q,Wp2q, � � � ,WpQqu and θb �
tbp1q,bp2q, � � � ,bpQqu, for minimizing the loss function of
the reconstruction error, over all samples of the input views:

E1pθK ;xi
j P Xq � 1

2M

ņ

i�1

mi̧

j�1

}xc
j � fpxi

jq}2 (4)

where M � 1{p2n°n
i�1miq, n is the number of view-

points and mi is the number of samples in the i-th view.
However, due to the high flexibility of the proposed

NKTM (e.g. number of units in each layer ppqq, θK), appro-
priate settings in the configuration of the NKTM are needed
to ensure that it learns the underlying structure of the data.
Since the input data xi

j P Rpp0q , where pp0q � 2000, we
discard the redundant information in the input data by map-
ping this high dimensional input data to a compact, high-
level and low dimensional representation. This operation
is performed by Q � 1 hidden layers of the NKTM. Then,
the low dimensional representation is mapped back to the
high dimensional output data phpQq P R2000q which is the
canonical pose independent representation of the input data.

To reduce over-fitting and improve generalization of the
NKTM, we add weight decay Jw and sparsity Js regular-
ization terms to the training criterion i.e. the loss function
(4) [2, 13]. Large weights cause highly curved non-smooth
mappings. Weight decay keeps the weights small and hence
the mappings smooth to reduce over-fitting [17]. Similarly,
sparsity helps in selecting the most relevant features to im-
prove generalization.

E2pθK ;xi
j P Xq � E1pθK ;xi

j P Xq � λwJw � λsJs (5)

where λw and λs are the weight decay and sparsity parame-
ters respectively. The Jw penalty tends to decrease the mag-
nitude of the weights θW � tW1,W2,W3u:

Jw �
Q̧

q�1

}Wpqq}2F , (6)

where }Wpqq}2F returns the Frobenius norm of the weight
matrix Wpqq of the q-th layer. Let,



ρ̂
pqq
t � 1

M

ņ

i�1

mi̧

j�1

h
pqq
t pxi

jq (7)

be the mean activation of the t-th unit of the q-th layer (aver-
aged over all the training samples xi

j P X). The Js penalty

forces the ρ̂pqqt to be as close as possible to a sparsity target ρ
and is defined in terms of the Kullback-Leibler (KL) diver-
gence between a Bernoulli random variable with mean ρ̂pqqt

and a Bernoulli random variable with mean ρ as follows:

Js �
Q̧

q�1

¸
t

KLpρ}ρ̂pqqt q

�
Q̧

q�1

¸
t

ρ log
ρ

ρ̂
pqq
t

� p1 � ρq log
1 � ρ

1 � ρ̂
pqq
t

(8)

The reasons for using these two regularization terms are
twofold. Firstly, not all features are equally important. Sec-
ondly, sparsity forces the NKTM to find a single, shared
and high-level virtual path by selecting only the most crit-
ical features. A dense representation may not learn a good
model because almost any change in the input layer modi-
fies most of the entries in the output layer.

Our goal is to solve the optimization problem
E2pθK ;xi

j P Xq in (5) as a function of θW and θb.
Therefore, we use stochastic gradient descent through back-
propagation to minimize this function over all training sam-
ples in the mocap data xi

j P X.

2.3. Cross-View Action Description

So far we have learned an NKTM using mocap data to
transfer knowledge from different unknown views to their
canonical view. This means that we have a set of non-linear
transformation functions H � thp1q,hp2q, � � � ,hpQqu
which transfer an action descriptor yi

j P Y from the i-th
unknown view to its canonical view yc

j as follows:

AS � yi
j Ñ A1 � hp1qpyi

jq Ñ A2 � hp2qphp1qpyi
jqq Ñ � � �

(9)
� � � Ñ AT � hpQqphpQ�1qp� � � php2qphp1qpyi

jqqq � � � qq � yc
j .

We describe an action video as alterations of its fea-
ture vector along the virtual path (9). As shown in Fig. 5,
a cross-view action descriptor ŷi

j is constructed by con-
catenating the transformed features along the virtual path
into a long feature vector ŷi

j � rAS ,A1,A2, � � � ,AT s.
This new descriptor implicitly incorporates the non-linear
high-level changes from the i-th to the canonical view. To
perform cross-view action recognition on any action video
data, we use the samples with their corresponding labels

Figure 5: A training action video descriptor xi
j P X is trans-

formed to its canonical view xc
j by performing a set of non-

linear transformations H � thp1q,hp2q, � � � ,hpQqu. We consider
each transformation as a virtual view which lies on the non-linear,
shared, and high-level virtual path. Therefore, the outputs of these
transformation functions tAS ,A1,A2, � � � ,AT u are augmented
to form a across-view feature vectors x̂i

j .

from a source view and extract their cross-view action de-
scriptors Ŷ. Then, we train a classifier such as SVM to
classify these actions. For a given sample at test time (i.e.
samples from target view), we simply extract its descriptor
using (9) and feed it to the trained classifier to find its label.

3. Experiments
The proposed algorithm was evaluated on two bench-

mark datasets including the INRIA Xmas Motion Acquisi-
tion Sequences (IXMAS) [34] and the Northwestern-UCLA
Multiview Action3D (N-UCLA) [33] datasets. We com-
pare our performance to the state-of-the-art cross-view ac-
tion recognition methods including Hankelets [18], Dis-
criminative Virtual Views (DVV) [19], Continuous Virtual
Path (CVP) [40], Non-linear Circulant Temporal Encoding
(nCTE) [11], and AND-OR Graph (AOG) [33].

To learn the NKTM, we use the CMU Motion Capture
dataset [1] which contains about 2600 mocap sequences of
different subjects performing a variety of daily-life actions.
It is important to note that we do not use the action labels
provided with this dataset. Moreover, we can generate as
many different views from the data as we desire. We report
action recognition results of our method for unseen and un-
known views i.e. unlike DVV [19] and CVP [40] we assume
that no videos, labels or correspondences from the target
view are available at training time. More importantly, un-
like Hankelets [18], nCTE [11], DVV [19], CVP [40] and
AOG [33] we learn our NKTM and build the motion trajec-
tories codebook using only mocap sequences. Therefore,
the NKTM and the codebook are general and can be used
for cross-view action recognition on any action videos.

3.1. Implementation Details

It is important to emphasize that unlike existing meth-
ods [11,19,33,40], we use the same learned NKTM to eval-



Figure 6: Sample frames from the IXMAS [34] dataset.

uate our algorithm on both IXMAS [34] and N-UCLA [33]
datasets. More precisely, nCTE [11], DVV [19], CVP [40]
and AOG [33] need to learn different models to transfer
knowledge between two views for different datasets. On
the other hand, we learn only one model that is applicable to
all data and requires no re-learning. For a fair comparison,
we feed the same motion trajectory descriptors, instead of
spatio-temporal interest point descriptors, to DVV [19] and
CVP [40]. Moreover, we use 10 virtual views, each with
a 30-dimensional features. We used the code supplied by
the authors of nCTE [11] and DVV [19] and carefully im-
plement CVP [40] as its code is not public. The remaining
accuracies are reported from their original papers. MAT-
LAB code and video presentation of our method are freely
available online.1

Dense Trajectories Extraction: The first step is to ex-
tract the dense trajectory descriptors and build the BoW
histograms of all mocap sequences from all possible view-
points. For the sake of computation we project each 3D re-
constructed mocap sequence under orthographic projection
for a few number (n � 18) of view-points (azimuthal angle
φ P Φ � t0, π{3, 2π{3, π, 4π{3, 5π{3u, and zenith angle
θ P Θ � tπ{6, π{3, π{2u). We define pφ, θq � pπ, π{2q
as the canonical view. We cluster the mocap trajectories
into k � 2000 clusters using k-means to make the general
codebook. We extract dense trajectories from videos using
Wang et al. [30] method. We take the length of each trajec-
tory L � 15 for both mocap and video sequences and the
dense sampling step size 5 for video samples.

Weights Initialization and NKTM Configuration:
For NKTM learning, we train a deep network with four
layers. The first step in the training of our NKTM is the
initialization of θW � tWp1q,Wp2q,Wp3qu and θb �
tbp1q,bp2q,bp3qu. Random initialization and unsupervised
pre-training [14] are two popular initialization methods for
deep training. In our experiments, due to small number of
hidden layers (� 2), we use a simple random initialization

1http://www.csse.uwa.edu.au/�ajmal/code.html

Table 1: Average accuracies (%) on the IXMAS [34] dataset
e.g. C0 is the average accuracy when camera 0 was used for train-
ing or testing. Each time, only one camera view is used for training
and testing. NKTM gives the maximum improvement for the most
challenging case, Camera 4 (top view).

Method C0 C1 C2 C3 C4

Hankelets [18] 59.7 59.9 65.0 56.3 41.2
DVV [19] 44.7 45.6 31.2 42.0 27.3
CVP [40] 50.0 49.3 34.7 45.9 31.0
nCTE [11] 72.6 72.7 73.5 70.1 47.5

Proposed NKTM 77.8 75.2 80.3 74.7 54.6

method [3, 9] which initializes the bias bpqq as 0 and the
weight matrix Wpqq as the following uniform distribution:

Wpqq � U

�
� 4

?
6a

ppqq � ppq�1q
,� 4

?
6a

ppqq � ppq�1q

�
(10)

where U r�a,�as is the uniform distribution in the interval
p�a,�aq, and ppqq denotes the number of units in the q-th
layer, where pp0q � 2000. We use sigmoid as the non-
linear activation function and multi-resolution search [2] to
find optimal values of the NKTM hyper-parameters. We
set the weight decay parameter λw � 0.0001, the sparsity
parameter λs � 0.5, and the sparsity target ρ � 0.05. The
NKTM consists 2000 units at the input/output layers and
1000 units at the two hidden layers. Thus our view invariant
action representation is a 6000 dimensional vector.

3.2. IXMAS Dataset [34]

This dataset consists of synchronized videos observed
from 5 different views, four side and one top view. It con-
tains 11 daily-life action classes: check watch, cross arms,
scratch head, sit down, get up, turn around, walk, wave,
punch, kick, and pick up. Each action is performed three
times by 10 subjects. Fig. 6 shows examples from this
dataset.

We follow the same evaluation protocol as in [11,18,19]
and verify our algorithm on all possible pairwise view com-
binations. In each experiment, we use all videos from one
camera as training samples and then evaluate the recogni-
tion accuracy on the video samples from the 4 remaining
cameras.

The proposed algorithm outperforms the state-of-the-art
methods on most view pairs. It is interesting to note that
our method can perform much better (about 7% on aver-
age) than the nearest competitor nCTE [11] when camera 4
is considered as either source or target view (see Table 1).
As shown in Fig. 6, camera 4 captured videos from the top
view, so the appearance of these videos is completely differ-
ent from the videos captured from the side views (i.e. cam-



Table 2: Accuracy (%) comparison with state-of-the-art methods under 20 combinations of source (training) and target (test) views on
the IXMAS [34] dataset. Each column corresponds to one source|target view pair. The last column shows the average accuracy. The best
result of each pair is shown in bold. AOG [33] cannot be applied to this dataset at it does not have 3D joint positions. DVV and CVP
require samples from the target view which are not required by our method.

Source|Target 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean

Hankelets [18] 83.7 59.2 57.4 33.6 84.3 61.6 62.8 26.9 62.5 65.2 72.0 60.1 57.1 61.5 71.0 31.2 39.6 32.8 68.1 37.4 56.4
DVV [19] 72.4 13.3 53.0 28.8 64.9 27.9 53.6 21.8 36.4 40.6 41.8 37.3 58.2 58.5 24.2 22.4 30.6 24.9 27.9 24.6 38.2
CVP [40] 78.5 19.5 60.4 33.4 67.9 29.8 55.5 27.0 41.0 44.9 47.0 41.0 64.3 62.2 24.3 26.1 34.9 28.2 29.8 27.6 42.2
nCTE [11] 94.8 69.1 83.9 39.1 90.6 79.7 79.1 30.6 72.1 86.1 77.3 62.7 82.4 79.7 70.9 37.9 48.8 40.9 70.3 49.4 67.4

Proposed NKTM 92.7 84.2 83.9 44.2 95.5 77.6 86.1 40.9 82.4 79.4 85.8 71.5 82.4 80.9 82.7 44.2 57.1 48.5 78.8 51.2 72.5

Figure 7: Individual action recognition accuracies of our method
and nCTE [11] on IXMAS [34] dataset.

era 0 to 3). Hence, we believe that the recognition results on
camera 4 are the most important for evaluating cross-view
action recognition. Moreover, some actions such as check
watch, cross arms, and scratch head are not available in
mocap dataset [11]. However, our method achieves 66.5%
average recognition accuracy on these three actions which is
about 11% higher than nCTE [11] (see Fig. 7). This demon-
strates that the proposed NKTM is able to transfer knowl-
edge between views without requiring all action classes in
the NKTM learning phase. A more thorough comparison of
the proposed algorithm with the state-of-the-art methods is
shown in Table 2. Our technique outperforms all methods
and achieves 72.5% average recognition accuracy which is
about 5% higher than the nearest competitor nCTE [11].

3.3. Northwestern-UCLA Dataset [33]

This dataset contains RGB, depth and human skeleton
positions captured simultaneously by 3 Kinect cameras.
The dataset consists of 10 action categories including: pick
up with one hand, pick up with two hands, drop trash, walk
around, sit down, stand up, donning, doffing, throw, and
carry. Each action is performed by 10 subjects from 1 to
6 times. Fig. 8 shows some examples. We compare our
method to four state-of-the-art algorithms (Hankelets [18],

Figure 8: Sample frames from Northwestern-UCLA Multiview
dataset [33]. Each column shows a different action.

DVV [19], CVP [40], nCTE [11]).
We follow [33] and use the samples from two cameras

for training and samples from the remaining camera for test-
ing. This dataset is very challenging because the subjects
performed some walking within most actions and the mo-
tion of some actions such as pick up with one hand and pick
up with two hands are very similar. The comparison of the
recognition accuracy for three possible combinations of se-
lecting training and test cameras is shown in Table 4.

Fig. 9 compares the per action class recognition accuracy
of our method with nCTE. Our method achieves higher ac-
curacy than nCTE [11] for most action classes. Note that a
search for some actions such as donning, doffing and drop
trash returns no results on the CMU mocap dataset web-
site [1] used to learn our NKTM. However, our method still
achieves 76.8% average recognition accuracy on these three
actions which is about 10% higher than nCTE [11].

Table. 3 shows the performance of the proposed method
after adding the output of each layer to the action descriptor.

3.4. Computation Time

It is interesting to note that our technique outperforms
the current cross-view action recognition methods on both



Table 3: The recognition accuracy of our method when the out-
puts of different number of layers are added to action descriptors.

1 1 � 2 1 � 2 � 3 1 � 2 � 3 � 4

IXMAS 62.7 68.0 71.9 72.5

N-UCLA 61.9 66.8 69.1 69.4

Table 4: Accuracy (%) on the N-UCLA Multiview dataset [33]
when two views are used for training and one for testing. DVV
and CVP use samples from the target view. AOG requires the joint
positions of training samples. Our method neither requires target
view samples nor joint positions.

{Sources}|Target t1, 2u|3 t1, 3u|2 t2, 3u|1 Mean

Hankelets [18] 45.2 - - -
DVV [19] 58.5 55.2 39.3 51.0
CVP [40] 60.6 55.8 39.5 52.0
AOG [33] 73.3 - - -
nCTE [11] 68.6 68.3 52.1 63.0

Proposed NKTM 75.8 73.3 59.1 69.4

IXMAS [34] and N-UCLA [33] datasets by transferring
knowledge using the same NKTM learned without supervi-
sion (without action labels). Therefore, compared to exist-
ing cross-view action recognition techniques, the proposed
NKTM is more general and can be used in on-line action
recognition systems. More precisely, the cost of adding a
new action class using our NKTM in an on-line system is
equal to training a multi-class SVM classifier. On the other
hand, this situation is computationally expensive for most
existing techniques [11, 33] as shown in Table 5. For in-
stance nCTE [11] requires to perform computationally ex-
pensive spatio-temporal matching for each video sample of
the new action class. Similarly, AOG [33] needs to train the
AND/OR structure and tune its parameters. Table 5 com-
pares the computational complexity of the proposed method
with AOG [33] and nCTE [11]. Compared to AOG [33]
and nCTE [11], the training time of the proposed method is
negligible. Thus, it can be used in an on-line system. More-
over, the test time of the proposed method is more faster
than AOG [33] and comparable to nCTE. However, nCTE
requires 30GB memory to store mocap samples.

4. Conclusion

We presented an algorithm for unsupervised learning of a
Non-linear Knowledge Transfer Model (NKTM) for cross-
view action recognition. The proposed NKTM is scalable
as it needs to be trained only once using synthetic data and
generalizes well to real data. Moreover, it learns a sin-
gle model to transform unknown views to their respective
canonical views. Action labels are not required to learn the

Figure 9: Individual action recognition accuracies of our method
and nCTE [11] on Northwestern-UCLA Multiview dataset [33].

Table 5: Computation time in minutes on the N-UCLA dataset
when videos from cameras 1 and 2 are used as source views and
videos from camera 3 are used as target view. Train+1 means the
time required to add a new action class (on-line system) after train-
ing with 20 action classes. All timings include feature extraction
time. Testing time is for classifying 429 action videos.

Method Training Train+1 Testing

AOG [33] 780 780 240
nCTE [11] 600 19 12

Proposed NKTM 26 0.52 12

NKTM. Moreover, knowledge of the viewing angles is not
required during training or testing. To represent actions,
we extract their trajectories and code them with a general
codebook. For learning the NKTM, we extracted dense tra-
jectories of synthetic points fitted to mocap data. We gener-
ated a large corpus of synthetic data to learn the NKTM by
projecting the synthetic points on 18 viewing directions be-
fore trajectory extraction. A general codebook was learned
from these trajectories using k-means and then used to rep-
resent the synthetic trajectories during learning as well as
the trajectories extracted from real videos during training
and testing. A linear SVM was used to classify actions. Ex-
periments on two standard datasets show that the proposed
approach outperforms existing state-of-the-art.
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