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Abstract

It is well known that the problem of camera pose estima-
tion with unknown focal length has 7 degrees of freedom.
Since each image point gives 2 constraints, solving this
problem requires a minimum of 3.5 image points of 4 known
3D points, where 0.5 means either x or y coordinate of an
image point. We refer to this minimal problem as P3.5P.
However, the existing methods require 4 full image points
to solve the camera pose and focal length [21, 1, 3, 23]. In
this paper, we present a general solution to the true mini-
mal P3.5P problem with up to 10 solutions. The remaining
image coordinate is then used to filter the candidate solu-
tions, which typically results in a single solution for good
data or no solution for outliers. Experiments show the pro-
posed method significantly improves the efficiency over the
state of the art methods while maintaining a high accuracy.

1. Introduction

The Perspective-n-Point (PnP) problem is a classic prob-
lem in computer vision, and a key component of many tech-
niques, including incremental structure from motion [18, 6,
22] and location recognition [10, 16]. Given a set of n 2D
image points in a camera and their corresponding known
3D points, the problem is to solve for the unknown camera
parameters, including the pose and sometimes the intrinsics.

Let m be the number of independently unknown param-
eters of the camera, the minimal problem requires n =

m

2
image points to recover the unknowns. For example, the
homogeneous 3 × 4 camera projection matrix has m = 11
degrees of freedom, so it requires n = 5.5 image points
to compute [9]. Take P3P as another example, the cali-
brated pose estimation has m = 6 unknowns (3 for rota-
tion and 3 for translation) and thus requires n = 3 image
points [5, 13]. This paper addresses the m = 7 case, where
the unknowns are the camera pose and a single focal length
parameter. Obviously the corresponding minimum problem
is for n = 3.5 image points, which we call the P3.5P prob-
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Figure 1. The P3.5P problem. The input are the 3 image points
(x1, y1)(x2, y2)(x3, y3) plus either x4 or y4 of the 4th image point
and their corresponding 3D points {X1, X2, X3, X4} in the world
coordinate system. The 7 image coordinates give sufficient con-
straints for solving the unknown focal length and camera pose.

lem. See Figure 1 for an illustration.
The pose estimation problem with a single unknown fo-

cal length is a widely used approximation for the pose es-
timation of uncalibrated cameras, where the other intrin-
sic parameters are assumed known (e.g. principal point at
image center, zero skew). In particular, such a minimal
parametrization is often used in the 3D reconstruction of
internet photos [18, 6, 22]. Despite extensive studies on
various PnP problems over the past decades, surprisingly
there does not exist a general minimal solution for the P3.5P
problem. The state-of-the-art methods require n = 4 full
image points instead to solve for the m = 7 unknowns,
which leads to an over-constrained P4P (also called P4Pf)
problem [21, 1, 3, 23]. This paper presents the first general
solution to the P3.5P problem, which is truly minimal and
additionally has simpler polynomial systems than [3, 2, 23].

The extra image coordinate is straightforwardly useful
for solution verification. Among the set of solutions from
the 3.5 image points, we consider the ones with large re-
projection error for the remanding coordinate as invalid and
discard them. This reliable reduction of solution candidates
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makes the RANSAC-based pose estimation more efficient.

2. Background
Let P be the projection matrix to solve and P k be the

k-th row of P . For each known 3D point i = 1, 2, 3, 4,
we use Xi to denote its inhomogeneous coordinates and
X̃i = [X>i , 1]> to denote its homogeneous coordinates.
The observed image point (xi, yi) of Xi is given by per-
spective projection

(xi, yi) =

(
P 1 X̃i

P 3 X̃i

,
P 2 X̃i

P 3 X̃i

)
.

The image coordinates xi and yi provide two independent
linear constraints on P as the following

0 = P 1 X̃i − xi P 3 X̃i (1)

0 = P 2 X̃i − yi P 3 X̃i, (2)

which we refer to as the image coordinate constraints.
Any PnP problem is essentially to solve for the projection
matrix from 2n image coordinate constraints. For example,
11 such equations gives to a linear system that allows for
solving a 3 × 4 projection matrix. It can be seen that the
image coordinate constraint naturally handles any 0.5 im-
age point (that is, single image coordinate), because the two
constraints from xi and yi are independent. Without loss of
generality, we use the 7 image coordinate constraints given
by {x1, y1, x2, y2, x3, y3, x4} to solve the P3.5P problem.

Most existing P4P and PnP methods cannot be extended
to solve the P3.5P problem. Instead of using the image co-
ordinate constraints directly, these methods derive new con-
straints based on the equality of 3D point distances in the
world and camera coordinate systems. For 4 coplanar 3D
points, Abidi and Chandra [1] derived a set of simple dis-
tance ratio constraints from the tetrahedron volume, which
was later generalized by Bujnak et al. to handle 4 arbi-
trary 3D points [3, 2]. Recently, Zheng et al. developed
a new general P4P algorithm by exploiting the equality of
the angles defined by 3D point triplets [23]. In order to
parametrize all the 3D points in the camera coordinate sys-
tem, such methods require 4 complete image points along
with their depth parameters, which are incapable of han-
dling a single image coordinate. Our proposed method di-
rectly uses the image coordinate constraints, thus does not
have such limitations.

Triggs’s P4P algorithm [21] in fact can be extended to
handle the P3.5P problem, but it is inherently degenerate for
planar structures. This method first builds a linear system
for the projection matrix from the image coordinate con-
straints, and then parametrizes the projection matrix using
the null space, which is 4 = (12 − 4 ∗ 2) dimensional for
4 image points and would be 5 = (12− 7) dimensional for

3.5 image points. For a single unknown focal length, there
exist 4 constraints on the dual image of the absolute conic
(DIAC) [21], which is over-constrained for the 4 dimen-
sional null space but can lead to a finite number of solutions
for the 5 dimensional null space. However, similar to P4P,
such a derived P3.5P algorithm would have degeneracy is-
sues with planar structures, because planar scenes provide
fewer independent constraints on the calibration [20].

By modeling the P3.5P problem in Macaulay 2 [8],
we find it having 10 non-trivial solutions (focal length
f 6= 0) for non-coplanar points, and 8 non-trivial solu-
tions for coplanar points. Therefore, an optimal general
minimum solver for P3.5P should have 10 solutions (trivial
or non-trivial, real or imaginary). When applying Trigg’s
method [21] to the P3.5P problem, we find it producing
16 solutions, where 6 out of 16 are trivial with zero focal
lengths. Since P4P is over-constrained, the existing general
solutions [3, 23] discard some available constraints in order
to create a polynomial system with a finite number of solu-
tions. In particular, the P4P algorithm by Bujnak et al. [3]
can produce the expected number of 10 solutions, while the
method by Zheng et al. [23] has 16 solutions. In this paper,
we introduce a method for P3.5P with the desired minimal
number of 10 solutions.

The goal of this paper is to develop a general and
compact solution to the P3.5P problem that can work for
both coplanar points and non-coplanar points. To tackle
this problem, we find it necessary to introduce a new
parametrization for cameras with unknown focal length.

3. Minimal parametrization for P3.5P

Let us first examine the naive and standard parametriza-
tion for a camera with unknown focal length. We will show
its limitations in camera pose estimation and then propose a
novel compact parametrization for P3.5P.

3.1. Limitations of the standard parametrization

Except for the unknown focal length f , the camera in-
trinsic is assumed to have square pixels, no skew, and (0, 0)
principal point. Let R be the camera rotation and C be the
camera center, the projection matrix can be written as

P =

f f
1

R [I −C
]
. (3)

Such a naive parametrization is not ideal for minimal abso-
lute pose problems, due to the following two reasons.

First, it has a two-fold redundancy. There always exists
a different set of camera parameters for the same projection
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matrix as follows

P =

−f −f
1

−1
−1

1

R
 [

I −C
]
.

(4)
This alternative interpretation has a negated focal length and
an additional 180◦ rotation around the z-axis. When using
both focal length and camera rotation, the number of so-
lutions to minimal pose estimation problems would be un-
fortunately doubled. Two examples of such solution dou-
bling effect can be found in [11, 12], where the camera
parameters similarly include 1/f and rotation. Most other
absolute pose solvers avoid such a straightforward camera
parametrization, and instead either represent the projection
matrix using linear combination of null space [21, 15, 4] or
solve for the point depths [1, 3, 23].

Second, there exists an infinite number of trivial solu-
tions for coplanar points. The 7 or 8 image coordinate con-
straints can be trivially satisfied by the following:

P 1 = P 2 = 01×4 and (5)

P 3 X̃i = 0, i = 1...4 (6)

From the parametrization in Equation 3, we see that Equa-
tion 5 can be simply satisfied by f = 0. Equation 6 requires
the 4 points to be on the camera plane. Because the full 3
degrees of freedom of the rotation always allow to align the
normal of the camera plane with the 3D point plane, the re-
maining one degree freedom of in-plane rotation leads to an
infinite number of trivial solutions. This degeneracy can be
avoided by parametrizing 1/f instead of f as in [11, 12],
but the number of solutions is still doubled.

3.2. A new camera parametrization

We seek for new camera parametrization that can avoid
the solution doubling as well as the planar degeneracy.
Noticing that the alternative camera interpretation has an
additional rotation around the z-axis on the left side of the
original rotation matrix, we decompose the rotation matrix
R into two independent components:

R = RθRρ = R(z, θ) R(Φ, ρ) (7)

whereRθ is a rotation by θ around the z-axis andRρ is a ro-
tation by ρ around a unit axis Φ in the xy plane (Φ ⊥ z). See
Table 1 for the decomposition we derive using quaternions.
In the literature of affine structure from motion, a simi-
lar rotation decomposition of RρRθ was proposed for two-
view reconstruction by Koenderink and van Doorn [14, 17],
which only differs by the order of Rθ and Rρ. For affine
structure from motion, Rθ first aligns the epipolar lines of
two images and Rρ corresponds to the bas-relief ambiguity
of the 3D reconstruction.

R Rθ Rρ


ηw
ηx
ηy
ηz


η2w + η2z 6= 0


ηw
0
0
ηz




1
ηwηx + ηzηy
η2w + η2z

ηwηy − ηzηx
η2w + η2z

0



ηw = ηz = 0


cos θ2

0
0

sin θ
2




0
ηx cos θ2 + ηy sin θ

2

ηy cos θ2 − ηx sin θ
2

0


Table 1. The decomposition of rotation matrix R = RθRρ. Let
η = [ηw, ηx, ηy, ηz]

> be the quaternion representation of R, it
is straightforward to derive the above decomposition using the
Hamilton product of quaternions. The decomposition is unique
if η2w + η2z 6= 0. Otherwise, when ηw = ηz = 0, there is a valid
decomposition for any angle θ, which is not unique. Note when
ηw = ηz = 0, R and Rρ are 180 degree rotations around some
axis in the xy plane, which is rare in practice.

Substituting R with the two decomposed rotations in
Equation 3, the projection matrix is transformed into

P =

f f
1

R(z, θ) R(Φ, ρ)
[
I −C

]

=

f cos θ −f sin θ
f sin θ f cos θ

1

 R(Φ, ρ)
[
I −C

]
. (8)

Let fc = f cos θ and fs = f sin θ, we define a rotated
calibration matrix Kθ for convenience

Kθ = Kθ(fc, fs) =

fc −fs
fs fc

1

 . (9)

Finally, we arrive at a new parametrization for our camera
that has a single unknown focal length:

P = Kθ Rρ

[
I −C

]
=
[
Kθ Rρ T

]
, (10)

where the translation vector T = −KθRρC is basically the
4-th column of the projection matrix. For solving the mini-
mal pose problem, we parametrize the translation vector T
instead of the camera position C, which reduces the com-
plexity and redundancy in the multiplications.

The calibration matrix and the rotation Rθ around the z-
axis are now combined into the rotated calibration matrix
Kθ(fc, fs). The new parametrization successfully elim-
inates the two-fold redundancy of negated focal lengths,
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because the two alternative interpretations now have the
same parameters: fc = f cos θ = (−f) cos(θ + π) and
fs = f sin θ = (−f) sin(θ + π).

3.3. The P3.5P problem with 10 solutions

In order to build a problem with a minimal finite num-
ber of solutions, the decomposition of R = RθRρ needs be
unique. As shown in Table 1, there is an infinite number of
possible decomposition if the quaternion ofR is in the form
of [0, ∗, ∗, 0]>. The problem however can be easily avoided.
When there exists a finite number of possible cameras, we
can always rotate the world coordinate system to avoid hav-
ing such solutions, which we will discuss the details in Sec-
tion 4.4. From a moment, we assume the camera rotation R
has no solution in the quaternion form of [0, ∗, ∗, 0]>.

Since the quaternion of R is not in the form of
[0, ∗, ∗, 0]>, the w-component of the quaternion of Rρ is
non-zero. We can use a homogeneous quaternion vector
[1, qx, qy, 0]> to represent the rotation Rρ, which gives a
degree 2 polynomial matrix as follows

Rρ =

1 + q2x − q2y 2qxqy 2qy
2qxqy q2y − q2x + 1 −2qx
−2qy 2qx 1− q2x − q2y

 . (11)

Including the rotated calibration matrix Kθ(fc, fs), the ro-
tation Rρ parametrized by qx and qy , and the translation
vector T = [tx, ty, tz]

>, our P3.5P problem has the fol-
lowing 7 unknowns to solve

{fc, fs, qx, qy, tx, ty, tz} (12)

The 7 image coordinate constraints are now polynomials of
degree 3 in the 7 parameters.

By modeling the 7 polynomials in Macaulay 2, we find it
producing 10 solutions for both general points and coplanar
points. When the 4 points are coplanar, 2 out of the 10
solutions are trivial solutions. Equation 5 is now trivially
satisfied by fc = fs = tx = ty = 0. Equation 6 generally
gives 3 independent constraints on P 3, while P 3 also has 3
degrees of freedom (2 for Rρ and 1 for tz). This turns out
to give exactly the 2 trivial solutions. We are able to avoid
the planar degeneracy because the unknown rotation Rρ in
P 3 has only 2 degrees of freedom.

4. Solving the P3.5P problem

In this section, we first eliminate the translation vector
T from the image coordinate constraints, then further elim-
inate fc and fs from the problem, and finally build a poly-
nomial system of degree 6 for solving qx and qy . An outline
of our algorithm can be found in Table 2.

1. Detect and fix possible degeneracy Sec. 4.4
2. Eliminate the translation vector T Sec. 4.1
3. Eliminate the focal length fc and fs Sec. 4.2
4. Solve for Rρ using Gröbner basis Sec. 4.3
5. Solve for fc, fs and T using SVD Sec. 4.3
6. Add degeneracy-fix rotation to solutions Sec. 4.4
7. Filter solutions using the extra coordinate Sec. 4.5

Table 2. The outline of our new P3.5P algorithm.

4.1. Eliminating the translation vector T

Let R1
ρ, R2

ρ and R3
ρ be the three rows of Rρ, the perspec-

tive projection of point Xi can be written as

P X̃i = Kθ RρXi + T =

( fcR
1
ρ − fsR2

ρ ) Xi + tx

( fsR
1
ρ + fcR

2
ρ ) Xi + ty

R3
ρ Xi + tz


Let λi be the depth of the 3D pointXi ∈ {X1, X2, X3}, for
which we have a complete image point (xi, yi) :

λi [xi, yi, 1]> = P X̃i. (13)

We can obtain the translation T as a function of λitxty
tz

 = λi

xiyi
1

−P X̃i =

λixi − ( fcR
1
ρ − fsR2

ρ ) Xi

λiyi − ( fsR
1
ρ + fcR

2
ρ ) Xi

λi −R3
ρ Xi


(14)

By substituting the translation vector T into the perspective
projection, we obtain for any 3D point Xj the following

P X̃j =

( fcR
1
ρ − fsR2

ρ ) (Xj −Xi) + λi xi

( fsR
1
ρ + fcR

2
ρ ) (Xj −Xi) + λi yi

R3
ρ (Xj −Xi) + λi

 .
For any image coordinate xj and yk such that j 6= i and
k 6= i, the image coordinate constraints now become poly-
nomials in {fc, fs, qx, qy, λi} as follows:

(fcR
1
ρ − fsR2

ρ − xjR3
ρ)(Xj −Xi) + λi(xi − xj) = 0 (15)

(fsR
1
ρ + fcR

2
ρ − ykR3

ρ)(Xk −Xi) + λi(yi − yk) = 0 (16)

There are a total of 5 such polynomials defined by the re-
maining 5 image coordinates (other than xi and yi).

Because λi appears linearly in the 5 new image coordi-
nate constraints from point Xi (Equation 15 and 16) , we
can eliminate λi using any 2 of the 5 equations. For exam-
ple, by multiplying Equation 15 by (yi − yk) and Equation
16 by (xi − xj) and then subtracting them, we can obtain
the following polynomial constraint:

0 = (yi − yk)(fcR
1
ρ − fsR2

ρ − xjR3
ρ)(Xj −Xi)−

(xi − xj)(fsR1
ρ + fcR

2
ρ − ykR3

ρ)(Xk −Xi), (17)
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which is of degree 3 in {fc, fs, qx, qy}. Since the polyno-
mial equation encodes the geometric relationship between
4 image coordinates, we simply call it the quadruple con-
straint by {(xi, yi), xj , yk}.

Given the 5 image coordinate constraints from a 3D point
Xi, there are 10 possible equation pairs, which give 10
quadruple constraints. We find that there are only 4 linearly
independent equations from the 10. Considering the 3× 10
equations from {X1, X2, X3}, there turns out to be still
only 4 linearly independent equations. For simplicity, we
manually pick 4 linearly independent quadruple constraints
out of the 3× 10 equations:

{(x1, y1), x2, y3},
{(x1, y1), x3, y2},
{(x2, y2), x4, y3},
{(x3, y3), x4, y2}.

These 4 equations use exactly 7 image coordinates without
y4, which clearly differ with the existing P4P methods.

4.2. Eliminating the focal length fc and fs

Because fc and fs again appear linearly in the polyno-
mials for the quadruple constraints, we can rewrite the 4
polynomials as the multiplication of a 4× 3 degree 2 poly-
nomial matrix F (qx, qy) with vector [fc, fs, 1]>.

F (qx, qy)︸ ︷︷ ︸
4×3

fcfs
1

 = 0 (18)

Since these equations have non-trivial solutions, we must
have rank(F (qx, qy)) ≤ 2. Therefore, each 3×3 sub-matrix
of F (qx, qy) is rank deficient and has 0 determinant. By
computing the determinants of the 4 possible 3 × 3 sub-
matrices of F (qx, qy), we are able to eliminate fc and fs
and derive 4 polynomials in just two unknowns {qx, qy}.

It can be verified that the 4 determinant polynomials give
the expected number of 10 solutions. Because there are only
2 variables, any subset of 2 or 3 of the 4 determinant poly-
nomials still give a finite number solutions, but there may
be false solutions. In fact, any 2 polynomials of the 4 give
18 solutions, and 3 of the 4 give 10 or 12 solutions.

Since each element of F (qx, qy) is of degree 2, the ob-
tained polynomials of the 3 × 3 determinants are of degree
6. In comparison, the polynomials used in recent general
P4P methods [3] and [23] are of degree 8 and 7 respectively.
By solving the true minimal P3.5P problem instead of the
over-constrained P4P problem, we are able to obtain sim-
pler polynomials with lower degrees, which undoubtedly
would lead to an improved speed.

4.3. Solving for Rρ and then other parameters

By employing the standard Gröbner basis eigenvalue
method, we solve the 4 degree 6 polynomials for the two

unknowns qx and qy . If we multiply the 4 polynomials
with {q2x, qxqy, qx, qy, 1}, there are 20 polynomials with 43
monomials of degree 8 and lower. It can be verified that
these 20 polynomials are linearly independent in general
and contain all the elements need for the Gröbner basis with
respect to the GRevLex order. The 20 polynomials can be
stacked into a 20 × 43 coefficient matrix. After Gauss-
Jordan elimination of the matrix, it is then straightforward
to construct the 10× 10 action matrix for solving the poly-
nomials. In fact, 13 out of the 43 monomials are not used
by the action matrix construction, so we actually only need
to construct a 20 × 30 coefficient matrix for the G-J elim-
ination. This coefficient matrix is often called elimination
template. It is worth noting that our elimination template
is much smaller than those of previous general methods,
which are 154 × 180 in [3] , later reduced to 53 × 63 in
[2] by an exhaustive search, and most recently 36 × 52 for
the polynomials of [23].

Instead of using Gröbner basis to solve the polynomial
system, [23] opted for two alternative methods. The poly-
nomial eigenvalue (polyeig) factorization is shown to have
higher accuracy, while the characteristics polynomial (CP)
technique can lead to higher speed with a sacrifice to the
accuracy. Both strategies should be applicable to our poly-
nomial system, if we use only 2 of the 4 bivariate deter-
minant polynomials. In this work, we have only explored
the Gröbner basis eigenvalue method, which is suitable for
pure C++ implementation and has high accuracy. We find
our GB-based P3.5P solver has a comparable accuracy as
the polynomial eigenvalue solver of [23], while the P3.5P
solver has a much higher speed thanks to the reduced size
of the elimination template.

For each solution of qx and qy , the remaining unknowns
can be solved using singular value decomposition. To be
specific, [fc, fs, 1]> is the null space vector of F (qx, qy).
With the recovered fc and fs, another linear system can be
built using the image coordinate constraints to recover the
translation vector T .

4.4. Detecting and avoiding possible degeneracies

As discussed earlier, our proposed parametrization is de-
generate if there exists a solution with R in the quaternion
form of [0, ∗, ∗, 0]>. We may detect possible degeneracies
by explicitly solving for such cameras, which turns out to
have the following form

P =

a b 0 tx
b −a 0 ty
0 0 1 tz

 . (19)

Similar to the elimination of translation in Section 4.1, the
quadruple constraints now give 4 linear constraints for a and
b, which can be written as

D4×3 [a, b, 1]> = 0.
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If rank(D) = 3, the linear system has no solution and the
normal P3.5P algorithm can proceed. If rank(D) ≤ 1, the
linear system has an infinite number of solutions, which
means the P3.5P or P4P problems cannot be solved.

If rank(D) = 2, the linear system has a single solution,
then our parametrization of rotation is degenerate for the in-
put. To avoid such solutions, we can simply add an auxiliary
rotation to the world coordinate system (e.g. a random rota-
tion). Since there exists up to 10 solutions, such an auxiliary
rotation can be easily found. After finding the solutions for
the transformed non-degenerate P3.5P problem, the solu-
tions to the original problem can be obtained by adding the
auxiliary rotation.

If not adding the auxiliary rotation for degenerate data,
we find that the rank of the elimination template be less than
20, which would fail to solve the polynomial system. This
degeneracy has an extremely low probability to occur in
real problems, so we recommend skipping the degeneracy
avoidance for simplicity in RANSAC-based applications,
where some failure iterations are acceptable. For synthetic
problems, we do find it degenerate if all 3D points have the
same z value, for which the degeneracy can be fixed by ro-
tating 90 degrees around the x−axis.

4.5. Filtering the candidate solutions

Now the P3.5P algorithm has used 7 image coordinates
to find up to 10 possible solutions, and there is still one re-
maining image coordinate to utilize. Intuitively, the remain-
ing image coordinate can be used to verify the recovered
solutions and filter out the invalid ones. We compute the
reprojection error for the last image coordinate, and reject
a solution if the error is large. In addition, we can also dis-
card the solutions that result in negative point depths. Note
similar solution filtering is applicable to other existing P4P
solvers (e.g. [3, 23]), and these solvers are supposed to pro-
duce approximately the same number of filtered solutions.

5. Experiments

In this section, we evaluate the performance of the pro-
posed P3.5P algorithm and compare to existing general P4P
solvers [2, 23]. Unless filtering is explicitly mentioned, all
the real solutions from P3.5P are used in the evaluation.
Out of the various solvers by [2], we pick the most accurate
ratio-based GB solver (139×153 elimination template) and
call it Bujnak-ratio-GB. The method by [23] has two vari-
ants that solve the polynomials by polynomial eigenvalue
(polyeig) and characteristics polynomial (CP) respectively,
which we refer to as Zheng-polyeig and Zheng-CP.

5.1. Solver speed

Table 3 shows the speed comparison for our P3.5P
solver, three example GB-based P4P solvers from [2] and

the non-GB-based P4P solvers from [23]. Among the GB-
based solvers, our P3.5P solver has the smallest elimina-
tion template and is clearly the fastest one. Thanks to the
reduced size of the elimination template, the speed of our
method is close to the Zheng-CP solver, which however has
slightly worse accuracy. Note that the characteristic poly-
nomial method is also applicable to our polynomial system
if higher speed is desired.

Solver Polynomial solving method Time
Our P3.5P GB, 20× 30 G-J elimination 0.109ms

Ratio [2]
GB, 53× 63 G-J elimination 0.336ms
GB, 86× 96 G-J elimination 0.929ms
GB, 139× 153 G-J elimination 3.320ms

Zheng [23] GB, 36× 52 G-J elimination 0.257ms
polyeig 1.648ms
Characteristic polynomial 0.067ms

Table 3. Comparison of the solver speed (the polynomial solving
step). The timings for the GB-based solvers are benchmarked us-
ing G-J elimination and Eigen decomposition of random matrices.

5.2. Stability and accuracy

Similar to the experiments by [23], we first generate the
3D points in the camera coordinate system and their corre-
sponding observations, and then produce the 3D points in
the world coordinate by applying a random 3D similarity
transformation. The focal length is randomly chosen from
200 to 2000 pixels. For general 3D points, the points in the
camera coordinate are randomly distributed in the box of
[−2, 2]× [−2, 2]× [4, 8]. For coplanar points, the points are
generated similarly with a common z value and then rotated
randomly around the centroid.

We compare the recovered focal lengths {f} with the
ground truth fg , and examine the relative focal length error

δ =

∣∣∣∣f − fgfg

∣∣∣∣. If there are multiple solutions, the focal

length with smallest error is taken. If a solver returns no
solution, the error is considered infinite. Since the focal
length error is a reasonable indicator for the errors in other
parameters, this paper evaluates the accuracy of only the
focal length solutions due to the limit of space.

Figure 2 shows the distribution of log10 δ for noise free
data accumulated from 4000 runs. For both general and
coplanar 3D points, it can be seen that our P3.5P has an
overall similar numeric stability as Zheng-polyeig and out-
performs Zheng-CP and Bujnak-ratio-GB. We believe a fur-
ther improvement is possible by using polyeig.

Now we add zero-mean Gaussian noise to the image
points, and study the accuracy of the solvers under varying
level of noise. Taking into account of image normalization,
we use a camera with fixed focal length of 200 pixels. Fig-
ure 3 reports the median relative focal length error δ from
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Figure 2. Numeric stability on noise-free data. The horizontal axis
is log10 of the relative focal length error. The proposed P3.5P algo-
rithm has comparable stability as Zheng-polyeig for both general
3D points and coplanar 3D points.

500 runs per noise level. Overall, the accuracy of our P3.5P
is sufficiently good for real applications. Nevertheless, we
do find that our P3.5P solver has slightly larger errors as
the noise level grows, which can be explained by the over-
fitting of the 7 image coordinates. Please note the solutions
from the P3.5P solver always have near 0 reprojection er-
rors for 7 image coordinates. One possible future work is to
improve the accuracy by incorporating the remaining image
coordinate into the new polynomial system.

5.3. Number of solutions

We find that the P3.5P solver normally produces 2, 4 or
6 real solutions (without filtering), of which the distribution
can be found in Figure 4. For coplanar points, we notice the
pattern of real solutions pairs that have equal focal length
and mirrored poses. Since there are up to 8 non-trivial solu-
tions for coplanar points, this paring matches that fact that
P3P has a maximum number of 4 solutions.

For the solution filtering step, we use an adaptive thresh-
old ε ∗ f , where f =

√
f2c + f2s is the focal length of the

solution. To be specific, we use ε = 0.01, which corre-
sponds to about a 0.57 degree angular error. After filtering
the solutions according to the reprojection errors and the
sign of the point depth, we find both P3.5P and P4P solvers
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Figure 3. Median relative focal length error δ under varying noise
levels, where the horizontal axis is the standard deviation of the
Gaussian noise in pixels. Since the ground truth focal length is
200 pixels, the experimented noise levels are relatively high.

typically producing a single solution for good data, which is
reasonable for an over-determined problem. See Table 4 for
the detailed numbers. Similarly when the point data con-
tains outliers, it is unlikely that all the reprojection errors
are small for the 4 points. We contaminate the image points
by adding 100 pixel offset to a random coordinate (out of
8), and experiments show all the solvers usually producing
0 solution after the filtering.

Since P4P is over-determined, we should discard these
obviously invalid solutions. The simple filtering is partic-
ularly good for efficient RANSAC applications, because a
much smaller set of candidate solutions need to be tested.

5.4. Real images

We have integrated the proposed P3.5P solver into an in-
cremental reconstruction system, and found it working well
for 3D reconstruction of real images. After recovering the
camera poses, we apply the PMVS algorithm [7] to compute
the dense models. Figure 5 shows the dense reconstruction
examples for both planar scenes and non-planar scenes. The
well recovered camera pose leads to the satisfactory dense
reconstruction.
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No noise, no outliers With outlier
Mean # of real solutions Runs with δ < 10−8 Mean # of real solutions
General Coplanar General Coplanar General Coplanar

Zheng-polyeig 4.270 3.938 99.90% 99.32% 3.441 2.840
Zheng-CP 2.424 2.458 91.30% 68.53% 1.575 1.252

Bujnak-Ratio-GB 3.685 3.374 96.88% 79.45% 2.945 2.368
P3.5P 4.563 3.557 99.65% 99.55% 3.981 2.698

P3.5P w/ filtering 1.129 1.209 99.65% 99.15% 0.095 0.147

Table 4. Comparison of the the number of solutions. Although we only show the P3.5P stats for the filtering, the other solvers produce
approximately the same number of solutions if we filter the solutions by point depth sign and the summed reprojection errors.
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Figure 4. The number of real solutions. Here we count all the real
solutions from P3.5P, while the code of other solvers have already
done some filtering. Note the even number of solutions are due to
the fact imaginary eigen values show up in pairs.

6. Conclusions

This paper presents the first true minimal solver for
the pose estimation problem with a single unknown focal
length, which has 7 degrees of freedom. The new minimal
solver can recover up to 10 solutions from 7 image coor-
dinate (3.5 points). Our P3.5P solver has comparable ac-
curacy as the state-of-the-art P4P solvers, and has the best
speed among the accurate solvers thanks to the smallest GB
elimination template. The extra image coordinate can be
used to verify and filter the candidate solutions, and a sin-
gle solution is usually produced after the filtering.

In order to solve the P3.5P problem, we have intro-
duced a new parametrization for cameras with unknown fo-
cal length, which we believe having great potential in many

Figure 5. Two example reconstructions, for which the incremental
reconstruction uses the P3.5P based camera resection. The first
scene is a planar notebook and the second is a skull model. The
dense point clouds are generated by the PMVS software [7].

other uncalibrated camera problems, for example, [11, 12].
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