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Abstract

We address the problem of estimating location informa-

tion of an image using principles from automated repre-

sentation learning. We pursue a hierarchical sparse cod-

ing approach that learns features useful in discriminating

images across locations, by initializing it with a geometric

prior corresponding to transformations between image ap-

pearance space and their corresponding location grouping

space using the notion of parallel transport on manifolds.

We then extend this approach to account for the availabil-

ity of heterogeneous data modalities such as geo-tags and

videos pertaining to different locations, and also study a

relatively under-addressed problem of transferring knowl-

edge available from certain locations to infer the grouping

of data from novel locations. We evaluate our approach on

several standard datasets such as im2gps, San Francisco

and MediaEval2010, and obtain state-of-the-art results.

1. Introduction

Inferring which location co-ordinates an image corre-

sponds to is a challenging problem in visual recognition,

which has applications in areas such as surveillance, geo-

mapping, landform modeling among others. It differs from

other recognition problems pertaining to, say objects, scene,

and faces, in that it is not enough to model visual appear-

ance alone since two images that have similar appearance

can correspond to different locations, and two images hav-

ing dissimilar appearance can come from neighboring loca-

tions. While initial efforts investigating this problem began

atleast two decades ago [24, 25], substantial progress was

seen only in the last decade due to the availability of large

quantity of data and the related progress in data-driven tech-

niques [29, 14].

We now present a broad overview of methodologies that

have been proposed in the literature for this problem. One

of the prominent efforts is the im2gps method [13] that

brought the location recognition problem to the mainstream

vision community, by exploring different visual features

coupled with big data to show that it is indeed plausible to

estimate where an image was captured. There have been

many other efforts focusing on learning efficient feature

representations and location matching strategies using di-

verse set of techniques. For instance, [26] pursued a gen-

erative model based on epitomic image analysis to cap-

ture appearance and geometric structure of an environment

while allowing for variations due to motion, occlusion and

non-Lambertian effects. [20] combined 2D appearance con-

straints with 3D geometric relationships using iconic scene

graphs. Faster retrieval methods were pursued by [28] us-

ing vocabulary trees and by [21] using prioritized feature

matching. Ideas pertaining to structure from motion were

used by [15] to generate synthetic views from 3D point

clouds to assist image-based geo-location. Location search

using hybrid image-keyword technique was explored by

[35], while the contextual information conveyed by people

and events on locations for personal photo collections was

analyzed by [22].

More recently, several discriminative learning strategies

that could handle larger data scale were proposed. [6] rep-

resented the structure of the training location database as

a graph and proposed a method for selecting a set of sub-

graphs and learning a local discriminative distance function

for each of them. [12] trained per-location classifiers us-

ing support vector machines (SVM) for each location, by

handling the mismatch in the number of positive and nega-

tive class samples using non-parametric statistics. [4] pur-

sued random forest-based codebook learning on the feature

descriptors obtained using structure from motion computa-

tions on image collections. Manifold modeling of genera-

tive and discriminative appearance information was studied

by [11], by transferring such information across locations

using geodesic paths. Purely geometric correspondence-

free geo-localization was performed by [2] using 3D point-

ray features extracted from the digital elevation maps of

urban environments, and [19] worked with human anno-

tated line segments of ground view images to perform lo-

cation matching of planar structures under projective un-

certainty. There have also been studies based on repetitive
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image structures [31], probabilistic crowd sourcing with vi-

sual odometry and free online road maps [5], and using

overhead imagery and landcover survey data to geo-locate

ground-level photographs [23]. Other efforts include ideas

from random walks for GPS-tag refinement [37], and pair-

wise probability voting without RANSAC for fast location

inference [17].

Contributions: Our approach addresses the aspect of

learning good representations for location recognition, and

we pursue this objective in both geometric and statistical

flavors. (i) Firstly we understand how the appearance infor-

mation of training images correlate with their location in-

formation. To this end we cluster the images based on their

appearance features to form the appearance space and clus-

ter the images based on their location information to obtain

the location space. We then bridge the two spaces by con-

sidering the subspace spanned by each cluster and then em-

ploying the notion of parallel transport on Grassmann mani-

fold to produce a collection of possible transformations that

map information contained in subspaces from one space on

to another. (ii) We use this geometric information as a prior

for initializing a hierarchical sparse coding scheme, which

automatically learns representations that compactly repre-

sent each image from the large pool of information con-

veyed by the geometric prior. We then train discriminative

classifiers on the sparse codes to infer location information

of the test image. An overview of our approach is given in

Figure 1.

We believe an explicit modeling of transformations

across location and appearance information is essential to

address the challenging problem of location recognition.

While many existing approaches consider this problem as

just another classification problem, we empirically demon-

strate that our geometric prior is beneficial to such tech-

niques as well. Since such a prior increases the amount data

to be processed and the dependency between them by sev-

eral folds, our feature learning solution using hierarchical

sparse coding brings in efficiency with regards to these chal-

lenges. Our objective in learning sparse codes also lends it-

self to integrate heterogeneous data modalities such as geo-

tags and videos, in addition to images, as well as in trans-

ferring knowledge gained on recognizing certain locations

to perform inference on never-seen-before locations. We

present details of our approach in Section 2, followed by

evaluations on three public datasets in Section 3. Section 4

concludes the paper.

2. Proposed Approach

Let z = {(xi, yi)}
N
i=1

denote the training data, where

xi ∈ R
n is the n-dimensional feature vector pertaining to

the ith training image and yi is its location co-ordinates.

Given a test image feature vector x̄, the goal of this work

is to estimate its location ȳ. We proceed by, (i) learning

Figure 1. Learning representations for location recognition by ex-

plicitly characterizing relationship between image appearance and

their location grouping. Given training data z with location la-

bels, we cluster the data to form appearance space A and location

space L, and derive geometric transformations between them us-

ing parallel transport T on the Grassmann manifold. Shown on

the manifold are points corresponding to subspaces obtained from

each cluster. We then learn hierarchical sparse codes by initial-

izing it with the geometric prior and perform location estimation

of test data using SVM similarities learnt on sparse codes of the

training data.

the geometric prior T from the training data (Sec 2.1), (ii)

using it as an initialization in learning hierarchical sparse

codes (Sec 2.2), and (iii) constructing an SVM classifier on

the sparse codes to obtain a similarity matrix W (Sec 2.2.1).

We then compute the sparse code impacted by the prior for

the test data x̄, obtain its similarity vector from SVM, and

compute its nearest neighbor in W and assign ȳ to the loca-

tion co-ordinates of that neighbor.

2.1. Geometric Prior

We first understand how the appearance information and

location information contained in z correlate. We group z
according to their appearance features {xi}

N
i=1

into k clus-

ters using the normalized cuts algorithm [30], to form the

appearance space A. Similarly we group z using their loca-

tion {yi}
N
i=1

into k clusters, by dividing the locations uni-

formly in rectangular patches under a planar earth surface

assumption, to obtain the location space L. We then obtain

subspaces for each cluster, by performing principal compo-

nent analysis on the features xi of images contained in those

clusters. We now have k subspaces SA = {SA
j }k

j=1
for A

and SL = {SL
j }

k
j=1

for L, respectively. Let d be the dimen-

sion of each subspace, with d < n. Since the subspaces are

points on the Grassmann manifold Gn,d [1], which is the

space of all d-dimensional subspaces in R
n, we now per-

form computations on this manifold to obtain the geometric

prior.



Since there could be multiple ways in which A and L
can be related, we utilize the notion of parallel transport

to obtain a collection of transformations T . We now briefly

discuss the concept of parallel transport, and refer the reader

to [1] for more details. Parallel transport TS of a point S on

Gn,d consists of moving the tangent space representation of

S, ∆S , along the geodesic γ(t) in the direction such that it

parallel to itself with respect to the geodesic. The tangent

space is a locally Euclidean representation around a point

on the manifold, which is obtained using inverse exponen-

tial maps, and the geodesic is the shortest path between a

pair of points on the manifold. With this qualitative back-

ground, we now present our method for obtaining the geo-

metric prior T in Algorithm 1.

Algorithm 1: Computing the geometric prior between

appearance space and location space

(1) Compute the mean of subspaces in A and L, denoted

by µA and µL respectively, using the Karcher mean

algorithm [18].

(2) Define tangent plane at µA and obtain the geodesic

γ(t) between the tangent plane representations of the

means, ∆µA
and ∆µL

respectively.

(3) Obtain parallel transport TµA
of µA by moving ∆µA

in a direction such that it is parallel with respect to the

geodesic γ(t).
(4) Using TµA

as the reference, parallel transport all

subspaces SA in A to obtain their corresponding

{TSA
j
}k

j=1
.

Let T , the union of TµA
and {TSA

j
}k

j=1
, denote our ge-

ometric prior. Once we have this set of transformations,

we map the information contained in them onto each train-

ing data in z by the following process. We sample points

on T using exponential maps to get a new collection of m
subspaces S∗ = {S∗

j }
m
j=1

. We then project each xi onto

these subspaces to obtain a set of m d-dimensional vectors,

X∗
i = [x∗

i,1, ..., x
∗
i,m] ∈ R

d×m. The collection {X∗
i }

N
i=1

thus contains information on how the appearance and loca-

tion properties of images contained in z correlate, and we

arrange them in columns to form a d×N ′ matrix P , where

N ′ = m∗N .

2.2. Hierarchical Sparse Coding

We now perform statistics on Z∗ = {(X∗
i , yi)}

N
i=1

to

discriminate between locations. Automated feature learn-

ing techniques [3] are widely popular in recent times due

to their ability to handle large quantities of data. Among

many such methodologies, the notion of sparse representa-

tion is particularly useful for our problem since the geomet-

ric prior T increases the amount of data Z∗ to be processed

by several times, and in doing so the dependency between

the data has also increased since they have been affected by

common set of transformations corresponding to the prior.

We thus apply techniques from hierarchical sparse coding

[16, 36] to learn codes that can be used to discriminate be-

tween locations.

Given a d × N ′ matrix P of training samples, whose

columns correspond to feature vectors contained in X∗
i ’s,

the task of learning a dictionary D = [d1, .., dK ] ∈ R
d×K

together with sparse codes Q = [q1, .., qN ′ ] ∈ R
K×N ′

is

typically given by the following optimization problem,

D?, Q? = arg min
D,Q

||P − DQ||2F (1)

s.t ||qi||0 ≤ λ,∀i = 1, .., N ′

||dj ||2 = 1,∀j = 1, ..,K

where ||.||F is the Frobenius norm, λ is a positive constant,

and the constraint ||qi||0 ≤ λ promotes sparsity in the co-

efficient vectors. The second constraint ||dj ||2 = 1 keeps

the columns of the dictionary D from becoming arbitrarily

large that may result in very small sparse codes. Among dif-

ferent solvers from the literature, we used the widely pop-

ular K-SVD technique [9] to solve (1), which operates by

alternatively computing D and Q. Having learnt the dictio-

nary D, given a feature vector x∗ from the column of P , we

obtain its sparse code q by minimizing the following objec-

tive,

||x∗ − Dq||2
2

s.t. ||x∗||0 ≤ λ (2)

q can be obtained by applying orthogonal matching pursuit

[27], which is a greedy algorithm that iteratively selects an

element of the sparse code to be made non-zero to min-

imize the residual reconstruction error. This explains the

basic sparse coding technique, and we extend it in a hierar-

chical fashion using the method of [34] by using two layers

with max pooling and keeping all other design choices un-

changed. While the input to the first layer is the features ob-

tained from the geometric prior, the input to the next stage

is the codes output by the first layer obtained from (2).

2.2.1 Location recognition

Let the features obtained from the above hierarchical sparse

coding approach for all training data in P be represented by

the matrix V = [v1,1, .., v1,m, v2,1, ...., vN,m] ∈ R
K×N ′

.

Each column inherits corresponding location labels from

Z∗. We now train a multi-class SVM classifier on this data

[8]. Since the number of location labels can be large, for

the sake of simplicity, we group the location co-ordinates

into k classes in the manner described for creating the lo-

cation space L. We then assign the class with highest SVM

probability for each vi,j , and concatenate the class labels for

{vi,j}
m
j=1

,∀i = 1, .., N to obtain the final similarity matrix

W = [w1, ..., wN ] ∈ R
m×N . The reasoning behind this is



that the images belonging to a particular location will have

closer similarity across location groupings when subjected

to the transformations produced by the geometric prior.

Then given a test image, we extract its feature x̄, subject it

to the geometric prior transformations T to obtain X̄∗, us-

ing which we obtain its sparse code [v̄1, v̄2, .., v̄m] ∈ R
K×m

and the m-dimensional SVM similarity vector w̄. We then

compute 1-nearest neighbor (1-nn) between w̄ and W and

assign the its location co-ordinates ȳ to that of its nearest

neighbor.

2.3. Heterogeneous Geo­location

We now address situations where heterogeneous data

modalities such as, image, video and geo-tags, are avail-

able for data from all locations. We extract relevant features

from each of the M modalities, and obtain their sparse code

matrix {V i}M
i=1

using the process described before. Since

the V i’s can have different dimensions, we map them on

to a common dimensional latent space using the heteroge-

neous manifold alignment approach of [32]. This approach

considers each modality as a manifold, and constructs map-

ping functions (f1, f2, .., fM ) by minimizing the following

cost function

F(f1, f2, .., fM ) = (A + C)/B (3)

A = 0.5

M∑

i=1

M∑

j=1

N ′∑

a=1

N ′∑

b=1

||fT
i vi

a − fT
j vj

b ||
2W i,j

s (a, b)

B = 0.5

M∑

i=1

M∑

j=1

N ′∑

a=1

N ′∑

b=1

||fT
i vi

a − fT
j vj

b ||
2W i,j

d (a, b)

C = 0.5

M∑

i=1

N ′∑

a=1

N ′∑

b=1

||fT
i vi

a − fT
i vi

b||
2W i

c(a, b)

where the indices i and j denote the data modalities, and

vi
a denote the sparse code corresponding to ath column

of the matrix V i. The cost function A encourages data

from same class across modalities to be projected closer

to each other in the latent space, where W i,j
s (a, b) = 1 if

vi
a and vj

b are from same class, and W i,j
s (a, b) = 0 oth-

erwise. The cost function B encourages data from differ-

ent classes across modalities to be separated in the latent

space, with W i,j
d (a, b) = 1 if vi

a and vj
b are from differ-

ent classes, and W i,j
d (a, b) = 0 otherwise. The cost func-

tion C preserves topology of the data within each modality,

where W i
c(a, b) denotes similarity between two data sam-

ples, vi
a and vi

b, within a same ith modality and we define

W i
c(a, b) = e−||vi

a−vi
b||

2

. Hence the cost function in (3)

keeps similar data samples closer by minimizing A and C,

and keeps dissimilar samples farther by maximizing B, and

to produce the mapping functions {fi}
M
i=1

.

We thus obtain an integrated sparse code U across dif-

ferent modalities mapped onto the latent space given by,

U = [f1(V
1) f2(V

2) .. fM (V M )] using which we train

the SVM classifier as before to obtain similarity vectors and

perform location inference on multi-modal test data.

3. Experiments

We tested our method on three public datasets namely,

im2gps [13] containing earth scale images, San Francisco

[7] containing images from a smaller scale corresponding

to the city of San Francisco, and MediaEval2010 [10] con-

taining Flickr videos of varied locations along with textual

meta data. These set of experiments serve as a good test

bed to evaluate our algorithm on different types of features

as well as on varying range of locations.

Parameter settings and design choices: For all the ex-

periments, we used the following parameters. The number

of clusters k for obtaining the appearance space A and loca-

tion space L, as well as the number of classes in training the

SVM, was set as 64. Subspace dimension d was set as 100,

as it contained upto 99% of energy of the data we are mod-

eling. We sampled five uniformly spaced points on each

transformation obtained from parallel transport contained

in our geometric prior T . For multi-class SVM, linear ker-

nel was used in a one-class vs. remaining classes config-

uration. Parameters related to hierarchical sparse coding

and heterogeneous latent space mapping were retained as

those prescribed in the original techniques. Also note that

our choices of algorithms such as normalized cuts, principal

component analysis, and SVM can be substituted with other

alternatives from the literature.

3.1. im2gps dataset

This dataset [13] contains over six million geo-tagged

photos of the world collected from Flickr. While this is

a tremendous amount of data, it can not be considered an

exhaustive visual sampling of earth, since it averages only

about 0.0435 pictures per square kilometer of the earth’s

land area. From each image the following features were ex-

tracted as per the protocol namely, tiny image, color his-

tograms, texton histograms, line features, gist descriptor

with color, and geometric context. We then concatenate

these features into a single vector to obtain our training

collection z. The standard test set contains 237 images of

which 5% were recognizable as popular tourist sites, while

the remaining are not. The results are given in Figure 2(a).

We also experimented with the 2K random test set, that con-

tains much less tourist sites, and geographically uniform

test set that avoids denser representation of certain loca-

tions. We present our location recognition results for these

two test sets in Figure 2(b).

3.2. San Francisco Dataset

We next experimented with the San Francisco Landmark

Dataset [7], which contains a database of 1.7 million train-
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Figure 2. Geo-location accuracy on the im2gps dataset using (a) the standard test set and (b) the 2K random, geographically uniform test

sets. Best viewed in color.

ing images of buildings in San Francisco with ground truth

labels, and calibration data, as well as a difficult query set

of 803 cell phone images taken with a variety of different

camera phones. The training data was originally acquired

by vehicle-mounted cameras with wide-angle lenses cap-

turing spherical panoramic images. For all visible buildings

in each panorama, a set of overlapping perspective images

is generated. z was obtained from training images using a

bag-of-words histogram codebook of length 800 represent-

ing by performing Euclidean k-means/vector quantization

on the SIFT features. We present the results in Figure 3 and

4, which reports recall as a function of the number of correct

matches within the top few closest neighbors, and the full

precision-recall curves respectively. Results on this dataset

by using the GPS information of images in selecting the

neighbors resulted in an average improvement of 12% over

the numbers reported in the above figures. With the GPS

option used, the similarity vectors corresponding to train-

ing data only from the five closest location clusters (out of

k) to that of the ground truth test data location are used.

3.3. MediaEval dataset

We then followed the protocol of [10] in experiment-

ing with the MediaEval2010 dataset. This heterogeneous

dataset contains 5091 Flickr videos accompanied by geo-

tags for various locations. For the text modality, we ex-

tracted the co-occurrence feature descriptor of words using

probabilistic latent semantic analysis to form z. Whereas

for the visual modality, we extracted the following features

from each video frame namely, color and edge directivity

descriptor, scalable color, edge histogram, fuzzy color and

texture histogram, and color layout, and concatenated them

for all frames to form z. We then pursued the heteroge-

neous geo-location approach detailed in Section 2.3 to infer

the location of heterogeneous test data comprising of 5125
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Figure 3. Geo-location recall rates on the San Francisco dataset as

a function of the number of retrievals within which closest match-

ing training neighbors are present. Best viewed in color.

Flickr videos. Results of our approach are given in Figure

5. We also tested our approach using video and geo-tags

separately, and the results were on average 10% and 17%

lesser than using the two modalities together.

3.4. Discussion

It can be seen that our approach consistently outperforms

existing techniques on diverse datasets with different loca-

tion patterns and data modalities. To test the sensitivity of

our approach to parameter variations, we additionally ex-

perimented with k values 4 and 16, d accounting for energy

between 95% and 99.5%, and uniformly sampling 3 and

7 points on the geometric prior. The results for different

combinations of these parameters, on all the three datasets,

resulted in a performance reduction of around 4.5% on av-

erage, which in many cases was still better than existing ap-
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Figure 4. Precision recall curves for geo-location on the San Francisco dataset corresponding to (a) perspective central images (PCI) and

(b) perspective frontal images (PFI). Best viewed in color.
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Figure 5. Heterogeneous geo-location accuracy on the MediaEval

dataset as a function of distance between estimated location co-

ordinates with that of the ground truth. Best viewed in color.

proaches. This sheds light on the robustness of our approach

to parameter choices. For all the above experiments, we also

performed 1-nn on the hierarchical sparse codes V directly

instead of training an SVM. The performance dropped by

around 15% on average which highlights the utility of label

information, even if coarse, to perform inference. Computa-

tionally, we could perform location inference of a test image

in about 3 seconds on a single 2GHz machine. Some exam-

ples of correct and incorrect location estimates for test data

are shown in Figure 6.

3.4.1 Utility of geometric prior

We then analyzed the impact of the geometric prior. Instead

of projecting training data xi on T to obtain X∗
i , we gave xi

as the input to hierarchical sparse coding. This resulted in

an average reduction in performance of 14% across all three

datasets. To see if T could help other existing techniques as

well, we implemented the method of [12] that learns per-

location classifiers with xi as input, and then with X∗
i as

input. We saw an average increase in performance of 6.3%.

These experiments strongly convey the utility of learning

transformation priors between appearance space and loca-

tion space. We then studied if parallel transport is indeed

the best way to obtain such a prior. For this, we used the

geodesic γ(t) between the means of A and L, µA and µL as

a single transformation instead of obtaining several transfor-

mations using parallel transport. The results decreased by

8.9% on average across all datasets, thereby reinforcing the

benefits of our approach for obtaining the prior (Sec 2.1).

3.4.2 Utility of hierarchical sparse coding

We then studied if hierarchical feature learning is essential,

by working with a single layer sparse coding approach. The

results reduced by 9.5% on average across all datasets. We

then studied if sparse coding is indeed essential, by training

SVM directly on Z∗ instead of V . For this case the results

reduced by 21% on average. These studies show the utility

of hierarchical feature learning using sparse coding. While

there are discriminative methods to learn sparse codes, we

learn them in a generative manner in Sec 2.2 so that we

could use them for further processing with heterogeneous

modalities (Sec 2.3) and for inferring novel locations dis-

cussed next.

3.4.3 Transferring knowledge to novel locations

We now study how our model trained on specific locations

can be used to perform inference on new locations that were

not a part of training. For this we separately considered z
from the im2gps and San Francisco datasets, and randomly



chose half the number of clusters (32) for training purpose

and the remaining half for testing. We repeated this pro-

cess ten times separately for both the datasets. For each

trial, we learnt the SVM classifier on the training data sparse

codes. We then obtained the similarity vectors for the test

data (Sec 2.2.1), and grouped them into 32 clusters using

normalized cuts. Ideally, we would like the grouping results

to match with the ground truth clusters. We obtained aver-

age clustering accuracy of 68%, using the method of [33],

which signifies that the model learnt on different locations

is generalizable enough to new locations. While we stayed

at the cluster level to compute the accuracy, we calculated

the location co-ordinate level accuracy by using the follow-

ing process. For each similarity vector obtained for novel

location test data, we computed its four closest neighbors

from the test set based on similarity vectors and computed

the average difference between the ground truth location of

the test data with that of its neighbors. Using this distance,

our results were about 55% accurate within a 100km error

tolerance zone.

We then performed experiments by training on one

dataset and testing it on another, and using the data fea-

tures prescribed by the training dataset. We did two tri-

als by using im2gps dataset as training and San Francisco

dataset as testing, and vice-versa. Results for the first case

was 73% cluster-level accuracy and 58% location level ac-

curacy, while for the second case it was 51% and 38% re-

spectively. This could be because im2gps dataset has data

samples pertaining to San Francisco city and hence we do

have some knowledge about the novel test set, albeit not

dense. Whereas for the case with San Francisco dataset

for training, we have far less knowledge to extrapolate for

im2gps locations outside of San Francisco city. This also

explains why the results for this case is less than the results

obtained for within a dataset split between training and test-

ing that was discussed in the previous paragraph.

4. Conclusion

We have addressed the challenging problem of location

recognition by learning transformational priors capturing

relations between image appearance and their location, and

encoding them using hierarchical feature learning mecha-

nism based on sparse coding. Besides obtaining state-of-

the-art results in three public datasets and justifying the

reasons behind our design choices, we also demonstrated

the utility of our approach in handling heterogeneous data

modalities and in transferring knowledge gained on known

locations to unknown locations, which are important practi-

cal problems. Through this work we stress that while deep

statistical feature learning methods are very efficient in han-

dling big data problems, it is equally important to feed them

with strong geometric priors pertaining to the actual appli-

cation that one is trying to address.
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