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A good image description is often said to “paint a picture in your mind’s
eye.” The creation of a mental image may play a significant role in sentence
comprehension in humans [3]. In fact, it is often this mental image that is
remembered long after the exact sentence is forgotten [5, 7]. As an illus-
trative example, Figure 1 shows how a mental image may vary and increase
in richness as a description is read. Could computer vision algorithms that
comprehend and generate image captions take advantage of similar evolving
visual representations?

Recently, several papers have explored learning joint feature spaces for
images and their descriptions [2, 4, 9]. These approaches project image
features and sentence features into a common space, which may be used
for image search or for ranking image captions. Various approaches were
used to learn the projection, including Kernel Canonical Correlation Anal-
ysis (KCCA) [2], recursive neural networks [9], or deep neural networks
[4]. While these approaches project both semantics and visual features to
a common embedding, they are not able to perform the inverse projection.
That is, they cannot generate novel sentences or visual depictions from the
embedding.

In this paper, we propose a bi-directional representation capable of gen-
erating both novel descriptions from images and visual representations from
descriptions. Critical to both of these tasks is a novel representation that
dynamically captures the visual aspects of the scene that have already been
described. That is, as a word is generated or read the visual representation
is updated to reflect the new information contained in the word. We accom-
plish this using Recurrent Neural Networks (RNNs). One long-standing
problem of RNNs is their weakness in remembering concepts after a few
iterations of recurrence. For instance RNN language models often find dif-
ficultly in learning long distance relations without specialized gating units
[1]. During sentence generation, our novel dynamically updated visual rep-
resentation acts as a long-term memory of the concepts that have already
been mentioned. This allows the network to automatically pick salient con-
cepts to convey that have yet to be spoken. As we demonstrate, the same
representation may be used to create a visual representation of a written
description.

We demonstrate our method on numerous datasets. These include the
PASCAL sentence dataset [8], Flickr 8K [8], Flickr 30K [8], and the Mi-
crosoft COCO dataset [6] containing over 400,000 sentences. When gen-
erating novel image descriptions, we demonstrate results as measured by
BLEU, METEOR and CIDEr . Qualitative results are shown for the gen-
eration of novel image captions. We also evaluate the bi-directional ability
of our algorithm on both the image and sentence retrieval tasks. Since this
does not require the ability to generate novel sentences, numerous previ-
ous papers have evaluated on this task. We show results that are better or
comparable to previous state-of-the-art results using similar visual features.
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Words versus objects:
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Figure 1: Several examples of generated captions (red) and human generated
captions (black). Last row shows failure cases.
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